Cover Page July-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 7, Pages 455-459, July 2019
About Cover

The cover photo of July 2019 issue is dedicated to the 41st anniversary of the first reported synthetic approach of dendritic hyperbranched structure. The cover photo adopted from the Valer et al., where they reported the preparation of dendritic hyperbranched copolymers based on bis(hydroxyl methyl) propionic acid polyester and studied the architecture - behavior - properties relationship. Dendritic structures are known for their perfect chemical definition, highly dense structure, and a well-defined number of surface functionalities. The soft multifunctional modifications could be compliant to valuable flexibility for embedding different chemical moieties on the surface either within the structure or at the core.


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

E. Donnelly, F. M. Weafer*, T. Connolley, P.E. McHugh, M. S. Bruzzi 

College of Engineering and Informatics, National University of Ireland Galway, Ireland

Adv. Mater. Lett., 2019, 10 (7), pp 455-459

DOI: 10.5185/amlett.2019.9812

Publication Date (Web): Mar 01, 2019

E-mail: fiona.weafer@gmail.com

Abstract

For many years, computational modelling and simulation studies have been used by developers to advance device design and have been reported in regulatory medical device submissions. However, cardiovascular stent materials in such computational models are typically assumed to behave as a continuum. This approach assumes that bulk material properties apply to the micro-sized structure, i.e. material behavior is scale independent. However, as size is reduced, mechanical size effects arise as the grain size to specimen width ratio drops below a critical value. These size effects cause material behavior to deviate significantly from bulk material behavior. If such a deviation in material behavior is to be captured within computational models, it is necessary to represent the crystalline structure of a metal and to capture the anisotropic behavior of individual grains within these models. This paper describes the development of such a modelling methodology to investigate the phenomenon of strain localization within grains of a 316L stainless steel specimen under fatigue loading conditions.

Keywords

Finite element, size effect, microstructure, 316L stainless steel, strain localization.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM