Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

E. Donnelly, F. M. Weafer*, T. Connolley, P.E. McHugh, M. S. Bruzzi 

College of Engineering and Informatics, National University of Ireland Galway, Ireland

Adv. Mater. Lett., 2019, 10 (7), pp 455-459

DOI: 10.5185/amlett.2019.9812

Publication Date (Web): Mar 01, 2019

E-mail: fiona.weafer@gmail.com

Abstract


For many years, computational modelling and simulation studies have been used by developers to advance device design and have been reported in regulatory medical device submissions. However, cardiovascular stent materials in such computational models are typically assumed to behave as a continuum. This approach assumes that bulk material properties apply to the micro-sized structure, i.e. material behavior is scale independent. However, as size is reduced, mechanical size effects arise as the grain size to specimen width ratio drops below a critical value. These size effects cause material behavior to deviate significantly from bulk material behavior. If such a deviation in material behavior is to be captured within computational models, it is necessary to represent the crystalline structure of a metal and to capture the anisotropic behavior of individual grains within these models. This paper describes the development of such a modelling methodology to investigate the phenomenon of strain localization within grains of a 316L stainless steel specimen under fatigue loading conditions.

Keywords

Finite element, size effect, microstructure, 316L stainless steel, strain localization.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM