Cover Page December-2010-Advanced Materials Letters

Advanced Materials Letters

Volume 1, Issue 3, Pages 179-187, December 2010
About Cover

Spatially Controlled Cell Growth Using Patterned Biomaterials

Murugan Ramalingama,*, Ashutosh Tiwarib*

aWPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577 Japan

bBiomaterials Centre, National Institute for Materials Science, Tsukuba, 305-0047 Japan

Adv. Mater. Lett., 2010, 1 (3), pp 179-187

DOI: 10.5185/amlett.2010.9160

Publication Date (Web): Apr 08, 2012

E-mail: ,


Development of functional tissues often requires spatially controlled growth of cells over 2D surfaces or 3D substrates to maintain their distinct cellular functions; particularly it is essential for culturing anchorage-dependent cells. In this regard, development of new surfaces/substrates with superior surface properties that could control the cell behavior is of great important and extremely necessary for functional tissue engineering as well as to study how the cells spatially recognize and interact with synthetic material systems. Surface patterning is an approach to modify the surface of biomaterials, either chemically or topographically. Both the approaches are well demonstrated in manipulating cell behaviors such as shape, size, orientation, migration, proliferation, and differentiation. In this article, we review various commonly employed methodologies for use in patterning of biomaterial surfaces/substrates and their suitability in controlling cell behaviors.


Biomaterials, microfabrication, patterning, spatial cell growth, tissue engineering

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM