Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Madhushree M. Ravikumar, Vijeth R. Shetty, Suresh G. Shivappa*

Department of Chemistry and Research Centre, NMKRV College for Women, Jayanagar, Bangalore 560011, Karnataka, India 

DOI: 10.5185/amlett.2019.9909

Publication Date (Web): Mar 01, 2019

E-mail: sureshssmrv@yahoo.co.in

Abstract

Two organic compounds namely Acridine (ACD) and 9-aminoacridine (ACD-NH2) have been investigated as electrode materials for an aqueous rechargeable lithium-ion battery (ARLIB) applications. The electrochemical investigations reveal that the active species act as anodes in ARLIB systems. In this regard, nitrogen group act as redox center and undergo electrochemical reaction with Li-ions during charge and discharge process. The synthesis of 9-amonoacridine is done by standard method called chichibabin reaction. Amination of ACD enhances the electrochemical behaviour of the molecule. To improve the electrochemical performances of ACD & ACD-NH2, graphene is used as an additive for ARLIB system. The decorated molecules such as decorated Acridine (dACD) and decorated 9-aminoacridine (dACD-NH2) showed improved electrochemical performance as compared with ACD & ACD-NH2. The decoration is of great importance concerning capacity, reversibility and stability of cycling behavior during charge and discharge processes. Charge/discharge tests show that ACD, ACD-NH2, dACD, and dACD-NH2 have achieved initial discharge capacities of 119, 122, 149 and 220 mAh g-1 respectively at a current density of 0.2 mA. The good cyclic performance and agreeable discharge capacity of the cell signifies the application of dACD-NH2 as anode material for ARLIB system. 

Keywords

Acridine, amino-acridine, graphene, cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM