Graphene-MoS2-Au-TiO2-SiO2 Hybrid SPR Biosensor for Formalin Detection: Numerical Analysis and Development

Md. Biplob Hossain1*, Mehedi Hassan2, Lway Faisal Abdulrazak3, Md. Masud Rana4, Md. Mohaiminul Islam2, M. Saifur Rahman4

1Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore, Bangladesh

2Department of Electrical and Electronic Engineering, Bangladesh Army University of Engineering and Technology, Bangladesh

3Department of Computer Science, Cihan University-Slemani, Sulaimaniya, Iraq

4Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh

Adv. Mater. Lett., 2019, 10 (9), pp 656-662

DOI: 10.5185/amlett.2019.0001

Publication Date (Web): Mar 01, 2019

E-mail: biplobh.eee10@gmail.com

Abstract


In this letter, a surface plasmon resonance (SPR) biosensor is numerically investigated that used Graphene-MoS2-Au-TiO2-SiO2 hybrid structure for the detection of formalin. This developed sensor sensed the presence of formalin based on attenuated total reflection (ATR) method by observing the change of “surface plasmon resonance (SPR) angle versus the change of minimum reflectance” attributor and “the surface plasmon resonance frequency (SPRF) versus maximum transmittance” attributor. Chitosan is used as probe legend to perform the particular reaction with the formalin (formaldehyde) as target legend. Here, graphene as well as MoS2 are used as biomolecular recognition element (BRE), TiO2-SiO2 bilayer as the improvement of sensitivity and Gold (Au) as the sharp SPR curve. Numerical results are appeared that the variation of SPRF and SPR angle for improper sensing of formalin is quite negligible that confirms the absence of formalin whereas for proper sensing is considerably countable that confirms the presence of formalin. It is also shown that the sensitivity of conventional SPR sensor is 70.74% and the graphene–MoS2-based sensor is enhanced to 77% with respect conventional SPR sensor. The sensitivity is further enhanced to 79 % by including TiO2–SiO2 composite layer with respect to conventional SPR sensor. At the end of this letter, a comparative study of the sensitivity of the proposed work with the existing works is discussed.  © VBRI Press.

Keywords

Biosensor, surface plasmon resonance, formalin detection, resonance angle, resonance frequency.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM