Innovative Graphene-PDMS sensors for aerospace applications 

Filomena Piscitelli1*, Gennaro Rollo2, Fabio Scherillo3, Marino Lavorgna2

1CIRA - Italian Aerospace Research Centre, via Maiorise, Capua, 81043, Italy

2Institute for Polymers, Composites and Biomaterials, National Research Council, Portici, 80055, Italy

3Department of Chemical, Materials and Production Engineering of the University of Naples Federico II, 8012, Naples, Italy

DOI: 10.5185/amlett.2019.9903

Publication Date (Web): Feb 15, 2019



For aerospace morphing and deployable applications, the use of PDMS-based sensors is crucial because they are characterized by easy application on large surfaces, light design, very large deformations, and durability in harsh environmental conditions. In this contest, the goal of the present work is to manufacture innovative, highly deformable, piezoresistive sensors, manufactured by using a simplified and scalable method for the applications on large-area, such as the airplane wings. To this end, an ad-hoc polymeric matrix was designed by crosslinking Polydimethylsiloxane (PDMS) oligomers OH terminated with siloxane domains, obtained from hydrolysis and condensation of tetraethyl orthosilicate (TEOS). In particular, the solution of siloxanes domains precursors contributes to lower the viscosity without any solvents and to create, after curing, a fine crosslinked system which could withstand high deformation. Nanocomposites with graphene (6 ÷ 15 wt%) were prepared by dispersing the filler into the polymeric precursor by adopting both magnetic stirring and sonication. Regardless the dispersion method and the filler concentration, few-layers of graphene coexists with large aggregations, and the electrical conductivity and the Gauge Factor increase as the graphene content increases. It was found that the graphene filler tends to hinder the evaporation of solvents developed during the crosslinking reactions, generating porosity and enhancing conductivity. A better filler dispersion obtained through sonication reduces the conductivity. All nanocomposites show a good linear relationship between the strain and the relative electrical resistance change, since the non-linearity remains below the 5%, and quite no-drift can be observed in a wide operative range. 


Graphene, PDMS, piezoresistive sensors, stretchable electronics.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM