Determination of leachate pollution content in soil using in-situ dielectric measurement  

Mohammed Dahim1*, Rabah Ismail2, Hashem Al-Mattarneh1, 3, Randa Hatamleh3

1Vice president for project, King Khalid University, Abha 61411, Saudi Arabia

2University Technology PETRONAS, 32610 Seri Iskandar, Perak DR, Malaysia

3Department of Civil Engineering, Yarmouk University, Irbid 21163, Jordan

Adv. Mater. Lett., 2019, 10 (4), pp 298-301

DOI: 10.5185/amlett.2019.2253

Publication Date (Web): Jan 19, 2019



This paper presents the development of an electromagnetic probe to accurately measure the soil electromagnetic properties such as dielectric constant and loss factor in the field. The in-site dielectric probe sensor is designed and methods have been developed to calibrate and validate the accuracy of the sensor in measuring dielectric properties of the material. Clean saturated sandy soil material with porosity 40% was used. The soil samples were contaminated by leachate from municipality solid waste from the landfill site. Five levels of leachate contamination were prepared, ranging from 0% to 10%. Dielectric properties of soil polluted sample were measured using the proposed in-site dielectric sensor. Dielectric properties of contaminated soil were evaluated at a different frequency and leachate content. The result showed that both dielectric constant and loss factor decree with increasing frequency due to the reduction of conductance current at high frequency. Also, the result showed that the dielectric properties of leachate-contaminated soil decrease with increasing leachate content while the loss factor increase with increasing leachate content. Mathematical models were developed to determine the relationship between soil dielectric constant, loss factor and soil leachate pollution content.


Dielectric sensor, soil material, leachate, soil pollution, dielectric properties.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM