Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 381-385, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Miroslav Piska*, Katrin Buckova

Brno University of Technology, Faculty of Mechanical Engineering, Brno, 61669, Czech Republic

Adv. Mater. Lett., 2019, 10 (6), pp 381-385

DOI: 10.5185/amlett.2019.2229

Publication Date (Web): Jan 19, 2019



This work contributes to the problem of individual replacements of human joints by applying new types of implants and materials, made using modern additive technologies (melting of metal powders by laser and electron beam). The main attention is paid to the method called Electron Beam Melting used with the ARCAM Q10plus machine. Analyses of the sintered Ti6Al4V - ELI alloy samples were made from the point of view of production precision and quality after sintering in different technological modes and the surface quality reached after turning and tumbling, including measurement of other physical quantities. The results confirm an important effect of sample inclination in the chamber when building on the precision of the shape and quality of the surface. The tensile strengths were high (up to 1,012 MPa) and statistically consistent. Furthermore, the material exhibited high resistance to machining, expressed in terms of force loading and specific cutting forces, measured for a range of feed per rotation 0.05-0.40mm, cutting speed 48 m/min, depth of cut 1.0 mm and use of coated cemented carbides, in dry cutting conditions. Nevertheless, high quality after machining can be reached. The quality can be improved more by two-steps tumbling technology so finally, a glossy surfaces (Ra< 0.036 um) with high material ratios (Abbot-Firestone curves) and convenient tribological properties were found. Ongoing research is focused on studies of milling and belt grinding technology and fatigue properties in tensile R 0.1 mode of loading.


Titanium, EBM, cutting, surface, mechanical properties.

Previous issues

Artificial intelligence and machine learning empowering the mass medicine

Piezo-therapy in cancer: Current research and perspectives

Magnetic microwires for sensor applications

A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale

Fabrication and characterization of nano-bridge Josephson junction based on Fe0.94Te0.45Se0.55 thin film

Riboflavin-UVA gelatin crosslinking: Design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering

Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes

Ionic liquid [BMIM][Cl] immobilized on cellulose fibers from pineapple leaves for desulphurization of fuels

Synthesis and role of co-dopants (alkaline earth divalents and halides) on the photoluminescence of Eu2+ doped BaAl2O4 phosphor

Metal oxide (V2O5) incorporated fly ash based geopolymer for better sustainable engineering composites

Highly efficient storage of solar gains using aluminum foam heat exchangers  

Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity

Effect of diamantane on the thermal stability of cryomilled aluminum alloy

Upcoming Congress

Knowledge Experience at Sea TM