Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 381-385, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Miroslav Piska*, Katrin Buckova

Brno University of Technology, Faculty of Mechanical Engineering, Brno, 61669, Czech Republic

Adv. Mater. Lett., 2019, 10 (6), pp 381-385

DOI: 10.5185/amlett.2019.2229

Publication Date (Web): Jan 19, 2019

E-mail: piska@fme.vutbr.cz

Abstract

This work contributes to the problem of individual replacements of human joints by applying new types of implants and materials, made using modern additive technologies (melting of metal powders by laser and electron beam). The main attention is paid to the method called Electron Beam Melting used with the ARCAM Q10plus machine. Analyses of the sintered Ti6Al4V - ELI alloy samples were made from the point of view of production precision and quality after sintering in different technological modes and the surface quality reached after turning and tumbling, including measurement of other physical quantities. The results confirm an important effect of sample inclination in the chamber when building on the precision of the shape and quality of the surface. The tensile strengths were high (up to 1,012 MPa) and statistically consistent. Furthermore, the material exhibited high resistance to machining, expressed in terms of force loading and specific cutting forces, measured for a range of feed per rotation 0.05-0.40mm, cutting speed 48 m/min, depth of cut 1.0 mm and use of coated cemented carbides, in dry cutting conditions. Nevertheless, high quality after machining can be reached. The quality can be improved more by two-steps tumbling technology so finally, a glossy surfaces (Ra< 0.036 um) with high material ratios (Abbot-Firestone curves) and convenient tribological properties were found. Ongoing research is focused on studies of milling and belt grinding technology and fatigue properties in tensile R 0.1 mode of loading.

Keywords

Titanium, EBM, cutting, surface, mechanical properties.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM