Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Fariba Soltanolkottabi1, Mohammad Reza Talaie1,2,*, Seyedfoad Aghamiri1, Shahram Tangestaninejad

1Chemical Engineering Department, College of Engineering, University of Isfahan, Hezarjerib, Isfahan, P.O. Box 81746-73441, Iran

2Chemical Engineering Department, College of Petroleum & Gas, University of  Shiraz, Molasadra, Shiraz, P.O. Box 71348-51154, Iran

3Department of Chemistry, Catalysis Division, University of Isfahan, Hezarjerib, Isfahan, P.O. Box 81746-73441, Iran 

Adv. Mater. Lett., 2019, 10 (8), pp 604-609

DOI: 10.5185/amlett.2019.2280

Publication Date (Web): Jan 14, 2019



The present study concerns chromium benzenedicarboxylates MIL-53 and MIL-101 hydrothermal syntheses utilizing acetic acid, and their capabilities for CO2 adsorption. The effect of the parameters such as reaction time, reaction temperature, water concentration, and acetic acid content on adsorption characteristics of these metal-organic frameworks (MOFs) is investigated using L8 Taguchi experimental design. In synthesized MIL-101, with adding 1 acetic acid equivalent with respect to Cr, reaction time and temperature have been reduced from 24 h and 483 K to 6 h and 463 K. Also, the CO2 adsorption capacity has been measured by a volumetric method. The results have revealed that adding acetic acid and reducing water in the reaction mixture results in converting MIL-101 to MIL-53 which tends to an increase in CO2 adsorption. With regard to reaction conditions, the results show that MIL-53 and MIL-101 have the maximum CO2 adsorption capacities of 17.5 and 11.0 mmolg-1 at 3.5 bar and 299.2 K, respectively.  © VBRI Press.


MIL-53, MIL-101, acetic acid, CO2 adsorption.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM