Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Ahmed H. Ibrahim1, 2, Amina A. F. Zikry1, Rasha A. Azzam1, Tarek M. Madkour2*

1Department of Chemistry, Helwan University, Cairo 11785, Egypt

2Department of Chemistry, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt

Adv. Mater. Lett., 2019, 10 (8), pp

DOI: 10.5185/amlett.2019.2230

Publication Date (Web): Jan 14, 2019

E-mail: tarekmadkour@aucegypt.edu


Microporous polymeric membranes have found great applications in the area of water desalination and wastewater treatment, tissue engineering, drug delivery, and bone regeneration. The ability to create micro-size pores within a polymeric membrane allows for cavity formation that could form channels through which substances may permeate or percolate easily. The majority of these applications though, require micro-size porous membranes with small pore size and narrow pore-size distribution as to allow the control of the permeating substances or tissues. In the current work, an intricate and precise method was developed to generate micro-size porogen salt crystals with controlled micro-size distribution, which is then mixed with a specific biodegradable polymeric blend designed to offer both toughness and high flexibility for the production of microfiltration biodegradable membranes that can withstand the high pressures of large volumes of industrial wastewater undergoing filtration treatment. After casting, the porogen crystals are washed away rendering membranes with well-distributed micro-scale cavities. Using salt porogens offers a great advantage of no contamination to the environment since all salt particles are simply washed away. The ingenuity of this technique is that it allows the filtration of the wastewater at low or no pressures.  © VBRI Press.


Microfiltration, biodegradable, polymer blends, porogen microcrystals, wastewater treatment.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM