Cover Page April-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 4, Pages 259-262, April 2019
About Cover

The cover photo describes the ring topological structure of carbon nucleus (using vortex-fractal-ring theory), which consists from two globules with 3 protons globule substructures. As discussed by, this vortex-fractal-ring theory is a new and original view of elementary particles and the structure of atomic nuclei, atoms, and molecules. Its basics are simple for understanding through the comprehensive topological structure that does not need description by complicated mathematical formulas. This theory together with grammatical evolution can design new models of nanostructures and allows us to understand the fundamental physical and chemical reasons for the stability and reactivity of atoms and molecules.


Physical and mechanical properties of microwave absorber material containing micro and nano barium ferrite  

Hashem Al-Mattarneh1, 2*, Mohamed Dahim1 

1Department of Civil Engineering, Yarmouk University, Irbid 21163, Jordan

2Vice Presidency for Project, King Khalid University, Abha 61411, Saudi Arabia

Adv. Mater. Lett., 2019, 10 (4), pp 259-262

DOI: 10.5185/amlett.2019.2226

Publication Date (Web): Jan 14, 2019

E-mail: drhashem2010@yahoo.com  

Abstract

The rapid development of electronic systems and telecommunications has resulted in a growing and intense interest in microwave electromagnetic absorber technology and microwave absorber materials. In this study, thermoplastic natural rubber barium ferrite composite was developed using micro and Nano barium ferrite filler. This paper presented the improvement of the mechanical properties of the thermoplastic natural rubber barium ferrite (TPNR-BF) composite when the size of barium ferrite filler changed from 3 um to 55 nm. TPNR was prepared as hosting material, and the barium ferrite with particle size 3 um was used as filler. Five samples of the composite were prepared with barium ferrite content range from 0% to 20% by an increment of 5%. The same procedure was used to prepare five samples using barium ferrite with a particle size of 55 nm. Physical and Mechanical properties of the composite were determined such as density, SEM, hardness, stiffness, tensile stress, and strain. Also, the magnetic properties and hysteresis diagram and SEM were evaluated for both composites barium ferrite types. The results indicate that all mechanical properties decline with the increasing BF content due to the increasing size of the weak interfacial zone between the polymer and the filler. This trend could be enhanced by replacing the micro barium ferrite with Nanosize barium ferrite. The level of improvement in mechanical properties increases at high filler content.

Keywords

Mechanical properties, nanoparticles, microwave absorber, barium ferrite, natural rubber.

Current Issue

9th Anniversary of Advanced Materials Letters: Progress and Opportunities


Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries


Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces


Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles


Visualization of mechanical loads with semiconductor nanocrystals 


Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide


Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection


Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory


Innovative silicon compatible materials for light emitting devices  


Graphene micromesh for transparent conductive films application 


Applications of nano-scale Cirrus DopantTM to improve existing coatings


Chitin nanofibrils in renewable materials for packaging and personal care applications


Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics


Previous issues

Artificial intelligence and machine learning empowering the mass medicine

Piezo-therapy in cancer: Current research and perspectives

Magnetic microwires for sensor applications

A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale

Fabrication and characterization of nano-bridge Josephson junction based on Fe0.94Te0.45Se0.55 thin film

Riboflavin-UVA gelatin crosslinking: Design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering

Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes

Ionic liquid [BMIM][Cl] immobilized on cellulose fibers from pineapple leaves for desulphurization of fuels

Synthesis and role of co-dopants (alkaline earth divalents and halides) on the photoluminescence of Eu2+ doped BaAl2O4 phosphor

Metal oxide (V2O5) incorporated fly ash based geopolymer for better sustainable engineering composites

Highly efficient storage of solar gains using aluminum foam heat exchangers  

Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity

Effect of diamantane on the thermal stability of cryomilled aluminum alloy

Upcoming Congress

Knowledge Experience at Sea TM