Physical and mechanical properties of microwave absorber material containing micro and nano barium ferrite  

Hashem Al-Mattarneh1, 2*, Mohamed Dahim1 

1Department of Civil Engineering, Yarmouk University, Irbid 21163, Jordan

2Vice Presidency for Project, King Khalid University, Abha 61411, Saudi Arabia

Adv. Mater. Lett., 2019, 10 (4), pp 259-262

DOI: 10.5185/amlett.2019.2226

Publication Date (Web): Jan 14, 2019

E-mail: drhashem2010@yahoo.com  

Abstract


The rapid development of electronic systems and telecommunications has resulted in a growing and intense interest in microwave electromagnetic absorber technology and microwave absorber materials. In this study, thermoplastic natural rubber barium ferrite composite was developed using micro and Nano barium ferrite filler. This paper presented the improvement of the mechanical properties of the thermoplastic natural rubber barium ferrite (TPNR-BF) composite when the size of barium ferrite filler changed from 3 um to 55 nm. TPNR was prepared as hosting material, and the barium ferrite with particle size 3 um was used as filler. Five samples of the composite were prepared with barium ferrite content range from 0% to 20% by an increment of 5%. The same procedure was used to prepare five samples using barium ferrite with a particle size of 55 nm. Physical and Mechanical properties of the composite were determined such as density, SEM, hardness, stiffness, tensile stress, and strain. Also, the magnetic properties and hysteresis diagram and SEM were evaluated for both composites barium ferrite types. The results indicate that all mechanical properties decline with the increasing BF content due to the increasing size of the weak interfacial zone between the polymer and the filler. This trend could be enhanced by replacing the micro barium ferrite with Nanosize barium ferrite. The level of improvement in mechanical properties increases at high filler content.

Keywords

Mechanical properties, nanoparticles, microwave absorber, barium ferrite, natural rubber.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM