Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Akansha Dixit1, Nand Kumar1, Dibyendu S. Bag1*, Kavita  Agarwal1, Dhirendra K. Sharma2, N. Eswara Prasad1

1Defence Materials and Stores Research and Development Establishment, DMSRDE, P.O., G.T. Road, Kanpur 208013, India

2Department of Chemistry, Bundelkhand University, Jhansi-284128, India

Adv. Mater. Lett., 2019, 10 (6), pp 431-439

DOI: 10.5185/amlett.2019.2258

Publication Date (Web): Jan 14, 2019

E-mail: ds_bag@rediffmail.com

Abstract


Silver nanoparticles (AgNPs) embedded double network (DN) nanocomposite hydrogels [of P(AM-co-HEMA) as second network and PVA-Borax as first network] were synthesized by in-situ reduction of silver nitrate using citric acid in presence of the fully swollen high strength DN hydrogels. The AgNPs embedded DN nanocomposites hydrogels (Ag-DNG) were characterized by FTIR, XRD and TEM analyses. Such Ag-DNG hydrogels were studied for their degree of swelling and swelling kinetics. They were also evaluated for their anti-bacterial characteristics using a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria. The XRD analysis revealed the presence of AgNPs in the DN nanocomposite hydrogels. The AgNPs were observed to be 20-50 nm in diameter as observed by TEM analysis. The degree of swelling of Ag-DNG hydrogels was lower than that of the virgin DN hydrogel which was because of the space of pores of the DN hydrogels occupied by AgNPs. The virgin DN hydrogels did not exhibit any antimicrobial property, whereas Ag-DNG hydrogels exhibited a significant amount of antibacterial activity towards gram positive and gram negative bacteria. Such AgNPs incorporated high strength DN nanocomposite hydrogels may find potential biomedical application.

Keywords

Nanocomposite hydrogels, double network (DN) hydrogels, silver nanoparticles, antibacterial properties.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM