Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Leon Shaw*, Maziar Ashuri

Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, USA

Adv. Mater. Lett., 2019, 10 (6), pp 369-380

DOI: 10.5185/amlett.2019.2256

Publication Date (Web): Jan 14, 2019



Layered lithium nickel manganese cobalt oxides, Li(NixMnyCoz)O2 where x + y + z = 1 (NMCs), have been studied extensively due to their higher capacity, less toxicity and lower cost compared to LiCoO2. However, widespread market penetration of NMCs as cathodes for Li-ion batteries (LIBs) is impeded by their poor capacity retention and low rate capability. Coatings provide an effective solution to these problems. This article focuses on review of the recent advancements in coatings of NMCs from the mechanism viewpoint. This is the first time that coatings on NMCs are reviewed based on their functionalities and mechanisms through which the electrochemical properties and performance of NMCs have been improved. To provide a comprehensive understanding of the functions and mechanisms offered by coatings, the following functions and mechanisms are reviewed individually: (i) scavenging HF in the electrolyte, (ii) scavenging water molecules in the electrolyte and thus suppressing HF propagation during charge/discharge cycles, (iii) serving as a buffer layer to minimize HF attack on NMCs and suppress side reactions between NMCs and the electrolyte, (iv) hindering phase transitions and impeding loss of lattice oxygen, (v) preventing microcracks in NMC particles to keep participation of most NMC material in lithiation/de-lithiation, and (vi) enhancing the rate capability of NMC cathodes. Finally, the personal perspectives on outlook are offered with an aim to stimulate further discussion and ideas on the rational design of coatings for durable and high-performance NMC cathodes for the next generation LIBs in the near future.


Li-ion batteries, layered lithium nickel manganese cobalt oxides, coating, NMCs.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM