Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 391-394, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Visualization of mechanical loads with semiconductor nanocrystals 

Martin Moebius1, Joerg Martin2*, Melinda Hartwig1, Ricardo Decker1, Lothar Kroll1, 3, Reinhard R. Baumann1, 2, Thomas Otto1, 2 

1Technische Universität Chemnitz, Chemnitz, 09126, Germany

2Fraunhofer Institute for Electronic Nano Systems, Chemnitz, 09126, Germany

3Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, 09126, Germany

Adv. Mater. Lett., 2019, 10 (6), pp 391-394

DOI: 10.5185/amlett.2019.2221

Publication Date (Web): Jan 14, 2019

E-mail: joerg.martin@enas.fraunhofer.de

Abstract

Fibre-reinforced plastics offer excellent mechanical properties at low weight. Hence, such materials are ideally suited to reduce energy consumption and CO2 emission, e.g. in aircraft and automotive engineering, shipbuilding or in the field of renewable energies. However, in contrast to e.g. metals, lightweight structures are sensitive to mechanical loads exceeding a certain approved range. In order to detect mechanical overloads at an early stage and to avoid consequential failures in lightweight structures, we recently proposed a novel concept of a thin-film sensor for visualization of mechanical loads by using photoluminescence quenching of quantum dots. Here, we present results according to the optimization of the ionization efficiency of the cadmium selenide quantum dots by using poly(N-vinylkarbazol)(PVK) as charge transport material with favorable energy levels. Measurements of the photoluminescence intensity and electrical power confirm an increase of efficiency with almost the same photoluminescence drop compared to N,N,N′,N′-Tetrakis(3-methylphenyl)-3,3′-dimethyl-benzidine (HMTPD), most likely by the higher valence band offset between quantum dots and PVK. Furthermore, an integration of a layer stack with connected ceramic piezoelectric transducer demonstrates the successful use of the sensor system for mechanical load detection in lightweight structures. 

Keywords

Structural health monitoring, lightweight structures, photoluminescence, quantum dots.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM