1Technische Universität Chemnitz, Chemnitz, 09126, Germany
2Fraunhofer Institute for Electronic Nano Systems, Chemnitz, 09126, Germany
3Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, 09126, Germany
Adv. Mater. Lett., 2019, 10 (6), pp 391-394
DOI: 10.5185/amlett.2019.2221
Publication Date (Web): Jan 14, 2019
Copyright © IAAM-VBRI Press
E-mail: joerg.martin@enas.fraunhofer.de
Fibre-reinforced plastics offer excellent mechanical properties at low weight. Hence, such materials are ideally suited to reduce energy consumption and CO2 emission, e.g. in aircraft and automotive engineering, shipbuilding or in the field of renewable energies. However, in contrast to e.g. metals, lightweight structures are sensitive to mechanical loads exceeding a certain approved range. In order to detect mechanical overloads at an early stage and to avoid consequential failures in lightweight structures, we recently proposed a novel concept of a thin-film sensor for visualization of mechanical loads by using photoluminescence quenching of quantum dots. Here, we present results according to the optimization of the ionization efficiency of the cadmium selenide quantum dots by using poly(N-vinylkarbazol)(PVK) as charge transport material with favorable energy levels. Measurements of the photoluminescence intensity and electrical power confirm an increase of efficiency with almost the same photoluminescence drop compared to N,N,N′,N′-Tetrakis(3-methylphenyl)-3,3′-dimethyl-benzidine (HMTPD), most likely by the higher valence band offset between quantum dots and PVK. Furthermore, an integration of a layer stack with connected ceramic piezoelectric transducer demonstrates the successful use of the sensor system for mechanical load detection in lightweight structures.
Structural health monitoring, lightweight structures, photoluminescence, quantum dots.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study