Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 391-394, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Visualization of mechanical loads with semiconductor nanocrystals 

Martin Moebius1, Joerg Martin2*, Melinda Hartwig1, Ricardo Decker1, Lothar Kroll1, 3, Reinhard R. Baumann1, 2, Thomas Otto1, 2 

1Technische Universität Chemnitz, Chemnitz, 09126, Germany

2Fraunhofer Institute for Electronic Nano Systems, Chemnitz, 09126, Germany

3Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, 09126, Germany

Adv. Mater. Lett., 2019, 10 (6), pp 391-394

DOI: 10.5185/amlett.2019.2221

Publication Date (Web): Jan 14, 2019

E-mail: joerg.martin@enas.fraunhofer.de

Abstract

Fibre-reinforced plastics offer excellent mechanical properties at low weight. Hence, such materials are ideally suited to reduce energy consumption and CO2 emission, e.g. in aircraft and automotive engineering, shipbuilding or in the field of renewable energies. However, in contrast to e.g. metals, lightweight structures are sensitive to mechanical loads exceeding a certain approved range. In order to detect mechanical overloads at an early stage and to avoid consequential failures in lightweight structures, we recently proposed a novel concept of a thin-film sensor for visualization of mechanical loads by using photoluminescence quenching of quantum dots. Here, we present results according to the optimization of the ionization efficiency of the cadmium selenide quantum dots by using poly(N-vinylkarbazol)(PVK) as charge transport material with favorable energy levels. Measurements of the photoluminescence intensity and electrical power confirm an increase of efficiency with almost the same photoluminescence drop compared to N,N,N′,N′-Tetrakis(3-methylphenyl)-3,3′-dimethyl-benzidine (HMTPD), most likely by the higher valence band offset between quantum dots and PVK. Furthermore, an integration of a layer stack with connected ceramic piezoelectric transducer demonstrates the successful use of the sensor system for mechanical load detection in lightweight structures. 

Keywords

Structural health monitoring, lightweight structures, photoluminescence, quantum dots.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM