Photomemristive heterostructures based on two-dimensional crystals

Gennady N. Panin1, 2* and Olesya O. Kapitanova3

1Department of Physics, Nano-Information Technology Academy, Dongguk University, Seoul, 04620, Republic of Korea

2Institute for Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow Distr., 142432 Russia

3Department of Chemistry, Moscow State University, Moscow, 119991 Russia

DOI: 10.5185/amlett.2019.2212

Publication Date (Web): Jan 14, 2019

E-mail: g_panin@dgu.edu; panin@iptm.ru 

Abstract

The unique electronic and optical properties of recently discovered two-dimensional (2D) crystals, such as graphene, graphene oxide, molybdenum disulphide etc., demonstrate their enormous potential in creating ultrahigh density electronics for image recognition systems and information storage. Synapse-like memristive heterostructures are considered as a new type of electronic switches with extremely low power consumption and footprint that can be used to overcome the limit of current CMOS technology. Memristors with a floating photogate, called photomemristors, based on graphene and MoS2, are considered. Photocatalytic oxidation of graphene is considered as an effective method for creating memristive heterostructures with photoresistive switching for non-volatile electronic memory of ultrahigh density for the formation of self-assembled nanoscale memristive elements interfacing with neural networks. 2D photomemristors with a floating photogate exhibit multiple states that can be monitored over a wide range of electromagnetic radiation and can be used in neurohybrid systems for image processing and pattern recognition, as well as for selective manipulation of neurons by light.

Keywords

2D crystals, memristor, photomemristive switching, floating photogate, neurohybrid systems.

Current Issue

Tech-footprints for virtual medicine


Advances in corrosion inhibition materials and technologies: A review


Ring models of atoms, molecules and nanomaterials


(FeCo/Ppy@C): Pt-free FeCo-Polypyrrole Nanocomposites Supported on Porous Carbon for Electrochemical Application


Physical and mechanical properties of microwave absorber material containing micro and nano barium ferrite  


Formation of nano-dispersed Cu particles during aging of a Fe-Cu alloy and dislocation effect


Preparation of novel tragacanth gum-entrapped lecithin nanogels 


Modulation of optical properties with multilayer thickness in antimonene and indiene   


Bi-doped CH3NH3PbI3 effective masses and electronic properties research: A theoretical study using VASP


Novel synthesis of Pd nanosheets used as highly sensitive SERS substrate for trace fluorescent dye detection 


Silver nanoparticles mediated by extract of Guar plant (Cyamopsis tetragonoloba), and evaluation of their photocatalytic and antibacterial properties


Study of TiO2 nanofibers prepared by electrospinning technique


Determination of leachate pollution content in soil using in-situ dielectric measurement  


Previous issues

Intelligent healthcare for future medicine

Review of nanoscale layered transition metal chalcogenide superconductors

Evaluation of NSAIDs antioxidant activity on lipid peroxidation in splenocyte membranes

Morphological, structural, thermal and degradation properties of polylactic acid-waxy maize starch nanocrystals based nanocomposites prepared by melt processing

Influence of surfactant on the patterning behavior of nanosilver within polyacrylamide nanogels

Cell study of the biomimetic modifications on a CoCrMo alloy for biomedical applications

SPIONs and curcumin co-encapsulated mixed micelles based nanoformulation for biomedical applications

Fabrication of Y2O3 coatings by cold-spray

Triclinic LiVPO4F/C cathode for aqueous rechargeable lithium-ion batteries

PRAP-CVD: Up-scalable process for the deposition of PEDOT thin films

Effect of storage time, plasticizer formulation and extrusion parameters on the performance of thermoplastic starch films

Effect of silver nanoparticles on the ammonia gas sensing behavior in diphenylamine based conjugated polymer

Study the possibility of using sisal fibres in building applications

Upcoming Congress

Knowledge Experience at Sea TM