Photomemristive heterostructures based on two-dimensional crystals

Gennady N. Panin1, 2*, Olesya O. Kapitanova3

1Department of Physics, Nano-Information Technology Academy, Dongguk University, Seoul, 04620, Republic of Korea

2Institute for Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow Distr., 142432 Russia

3Department of Chemistry, Moscow State University, Moscow, 119991 Russia

DOI: 10.5185/amlett.2019.2212

Publication Date (Web): Jan 14, 2019



The unique electronic and optical properties of recently discovered two-dimensional (2D) crystals, such as graphene, graphene oxide, molybdenum disulphide etc., demonstrate their enormous potential in creating ultrahigh density electronics for image recognition systems and information storage. Synapse-like memristive heterostructures are considered as a new type of electronic switches with extremely low power consumption and footprint that can be used to overcome the limit of current CMOS technology. Memristors with a floating photogate, called photomemristors, based on graphene and MoS2, are considered. Photocatalytic oxidation of graphene is considered as an effective method for creating memristive heterostructures with photoresistive switching for non-volatile electronic memory of ultrahigh density for the formation of self-assembled nanoscale memristive elements interfacing with neural networks. 2D photomemristors with a floating photogate exhibit multiple states that can be monitored over a wide range of electromagnetic radiation and can be used in neurohybrid systems for image processing and pattern recognition, as well as for selective manipulation of neurons by light.


2D crystals, memristor, photomemristive switching, floating photogate, neurohybrid systems.

Current Issue

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Previous issues

Artificial intelligence and machine learning empowering the mass medicine

Piezo-therapy in cancer: Current research and perspectives

Magnetic microwires for sensor applications

A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale

Fabrication and characterization of nano-bridge Josephson junction based on Fe0.94Te0.45Se0.55 thin film

Riboflavin-UVA gelatin crosslinking: Design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering

Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes

Ionic liquid [BMIM][Cl] immobilized on cellulose fibers from pineapple leaves for desulphurization of fuels

Synthesis and role of co-dopants (alkaline earth divalents and halides) on the photoluminescence of Eu2+ doped BaAl2O4 phosphor

Metal oxide (V2O5) incorporated fly ash based geopolymer for better sustainable engineering composites

Highly efficient storage of solar gains using aluminum foam heat exchangers  

Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity

Effect of diamantane on the thermal stability of cryomilled aluminum alloy

Upcoming Congress

Knowledge Experience at Sea TM