Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 395-399, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Giorgos Papadimitropoulos1*, Maria Vasilopoulou1, Nikos Vourdas1, Dimitris N. Kouvatsos1, Kostas Giannakopoulos1, Stella Kennou2, Dimitris Davazoglou1

1Institute of Nanoscience and Nanotechnology, NCSR Demokritos POB 60228, Agia Paraskevi, Attiki, 153 10, Greece

2Department of Chemical Engineering, University of Patras, Patra, 26500, Greece

Adv. Mater. Lett., 2019, 10 (6), pp 395-399

DOI: 10.5185/amlett.2019.2283

Publication Date (Web): Jan 14, 2019

E-mail: g.papadimitropoulos@inn.demokritos.gr

Abstract

Tantalum pentoxide films were deposited on Si substrates at room temperature, by heating metallic filaments at temperatures below 600 oC, at a pressure of 1 Torr in O2 environment. This deposition method can be applied for all metallic oxides having higher vapor pressure than the corresponding metal. These (hwTa2O5) films were composed by amorphous material (as revealed by XRD measurements) and were found to be highly transparent within the range 350-1000 nm. Spectroscopic ellipsometry measurements have shown that the real part of the refractive index (n) of hwTa2O5 films depends on the deposition time and has a value below 1.5. As shown by scanning electron microscopy (TEM) measurements, these grains were composed by others with dimensions near 5 nm and with voids between them. The above microscopy measurements explain the high porosity of hwTa2O5 films. Moreover, hwTa2O5 films were also characterized by XPS and UPS measurements and the stoichiometric composition of the deposited films was determined.

Keywords

Thin film, hot-wire deposition, tantalum pentoxide, room temperature growth.

Previous issues

Artificial intelligence and machine learning empowering the mass medicine

Piezo-therapy in cancer: Current research and perspectives

Magnetic microwires for sensor applications

A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale

Fabrication and characterization of nano-bridge Josephson junction based on Fe0.94Te0.45Se0.55 thin film

Riboflavin-UVA gelatin crosslinking: Design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering

Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes

Ionic liquid [BMIM][Cl] immobilized on cellulose fibers from pineapple leaves for desulphurization of fuels

Synthesis and role of co-dopants (alkaline earth divalents and halides) on the photoluminescence of Eu2+ doped BaAl2O4 phosphor

Metal oxide (V2O5) incorporated fly ash based geopolymer for better sustainable engineering composites

Highly efficient storage of solar gains using aluminum foam heat exchangers  

Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity

Effect of diamantane on the thermal stability of cryomilled aluminum alloy

Upcoming Congress

Knowledge Experience at Sea TM