Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 410-416, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Innovative silicon compatible materials for light emitting devices  

Adriana Scarangella1, Riccardo Reitano2, Francesco Priolo1,2,3, Maria Miritello1*

1CNR IMM, Via S. Sofia 64, 95123 Catania, Italy

2Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy

3Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania, Italy

Adv. Mater. Lett., 2019, 10 (6), pp 410-416

DOI: 10.5185/amlett.2019.2276

Publication Date (Web): Jan 14, 2019

E-mail: maria.miritello@ct.infn.it

Abstract

The paper reports the potentialities of innovative silicon compatible materials for light emitting devices. In particular thin films of Er doped yttrium oxide have been synthesized by a technique totally compatible with ULSI processes. Through the structural characterization, we will verify the high stability of the film and the good dopant dissolution. Moreover, by the investigation of the optical properties, we will demonstrate that the use of this compound is effective to introduce more than 1021 Er/cm3 in optically active state, value that cannot be reached in other Si compatible materials. The influence of Er content on the optical properties will be described in details. Moreover, we will propose the introduction of a proper sensitizer for Er, bismuth, in the same thin film. In particular, we will show that the (Er+Bi) co-doped yttrium oxide is a perfect host to overcome another important drawback of Er doped materials that is its low absorption cross section. The influence of Bi and Er contents on optical properties will be extensively discussed along the paper. Through the optimization of ratio between Bi and Er concentrations, high energy transfer efficiency will be reached with simultaneously a consistent increase of the effective Er cross section. A factor of more than three orders of magnitude have been obtained with respect to the direct excitation of Er.

Keywords

Light emitting devices, Erbium, yttrium oxide.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM