Cover Page May-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 5, Pages 312-318, May 2019
About Cover

Graphene has emerged as the most popular subject area in the active research field since its discovery in 2004. The published documents illustrate the popularity of Graphene research and innovations, spontaneously increased from about 150 in 2004 to 21,500 in 2018. Graphene is relatively young but high-hope for markets. The cover photo of May 2019 issue describes the structure of a cylindrical Graphene to celebrate the 15th anniversary of it's discovery.


A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale

Sandra Afflerbach*, Reinhard Trettin

Department of Chemistry and Biology, Institute of Building and Materials Chemistry, University of Siegen, Paul-Bonatz-Strasse 9 - 11, Siegen, 57076, Germany

Adv. Mater. Lett., 2019, 10 (5), pp 312-318

DOI: 10.5185/amlett.2019.2190

Publication Date (Web): Jan 14, 2019

E-mail: afflerbach@chemie.uni-siegen.de

Abstract

A major scientific challenge for carbon neutral, environmental friendly future energy production is the development of renewable energy production to technological readiness. One example are solar thermal power plants. Since their energy generation is intermittent, they demand for a feasible storage solution for which thermochemical reaction systems are considered. The present work subjects the thermochemical reaction system CaO / Ca(OH)2 and its structural-mechanical correlations impacting the powder bulk performance upon thermochemical cycling. On exemplified Ca(OH)2 crystals is shown, that during the first de- and rehydration process, the entire crystal morphology is disintegrated. The underlying mechanism is evaluated by theoretical considerations on the layered structure of Ca(OH)2 and validated by scanning electron microscopy (SEM) on the probed material before and after dehydration as well as after rehydration. The obtained findings are transferred to the technically relevant powdery storage material, where they are capable to explain the phenomenon of agglomeration, which is proven by measurement of secondary particle size distribution over a number of ten thermochemical reaction cycles. From SEM imaging performed on the samples it is found, that agglomerates consist of cohering smaller particles. The inferred insights can help to deduce necessary amendments of reactor design or material modification also for other thermochemical reaction systems.

Keywords

Thermochemical energy storage, calcium hydroxide, dehydration mechanism, agglomeration, structural-mechanical correlation.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM