Cover Page July-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 7, Pages 515-518, July 2019
About Cover

The cover photo of July 2019 issue is dedicated to the 41st anniversary of the first reported synthetic approach of dendritic hyperbranched structure. The cover photo adopted from the Valer et al., where they reported the preparation of dendritic hyperbranched copolymers based on bis(hydroxyl methyl) propionic acid polyester and studied the architecture - behavior - properties relationship. Dendritic structures are known for their perfect chemical definition, highly dense structure, and a well-defined number of surface functionalities. The soft multifunctional modifications could be compliant to valuable flexibility for embedding different chemical moieties on the surface either within the structure or at the core.

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Mahdi Mahmoudiniya1, 2*, Leo A.I. Kestens2, 3, Shahram Kheirandish1, Amir Hossein Kokabi4

1School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran​​​

2Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, the Netherlands​

3Metals Science and Technology Group, Ghent University, Ghent, Technologiepark 903 B-9052 Zwijnaarde, Belgium

4Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran

Adv. Mater. Lett., 2019, 10 (7), pp 515-518

DOI: 10.5185/amlett.2019.2211

Publication Date (Web): Jan 10, 2019



In the present study, a 2 mm thick ferrite-martensite dual phase steel was subjected to friction stir welding. The welding was conducted by a tungsten carbide tool at a constant rotational speed of 800 rpm and various feed rates of 50, 100 and 150 mm/min. The microstructural features of friction stir welded joints were characterized by field emission - scanning electron microscopy as well as by transmission electron microscopy. The relationship between microstructure and tensile properties of the joints was investigated. Results showed that the stir zone of the welds consisted of bainite packets, exhibiting a different morphology compared to the ferrite phase and to the martensite phase. Microstructural examination of the heat affected zone showed that there is a softened region in the heat affected zone in all joints, irrespective of the welding speed. Decomposition of the martensite phase during tempering of the initial martensite of the base material was responsible for the observed hardness reduction. The decrease of the hardness in the softened zone was 28 ± 3, 21 ± 2.5 and 15 ± 3.2 HV for welding speeds of 50, 100 and 150 mm/min, respectively; whereby the base material exhibited a hardness of 275 ± 3 HV. The lower softening corresponded to the higher welding speed, i.e., under conditions whereby heat input to the weld was minimum. The tensile test results showed that the ultimate tensile strength of all welded joints is lower than the base metal and failure takes place in the softened region of the joints. The increment of welding speed increased the strength of the joint so that the weld conducted at the highest welding speed (150 mm/min) showed the highest tensile strength of 687 MPa, i.e. 95% of the strength of the base metal (723 MPa).  © VBRI Press.


Friction stir welding, ferrite-martensite dual phase steel, mechanical properties, microstructure.

Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM