Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 405-409, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Mark Kracklauer1, 2, Fabian Ambriz-Vargas1, Gitanjali Kolhatkar1, Bernhard Huber1, 2, Christina Schindler2, Andreas Ruediger1*

1Institut Nationale de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada

2Munich University of Applied Sciences, Department of Applied Sciences and Mechatronics, Lothstrasse 34, 80335 Munich, Germany

Adv. Mater. Lett., 2019, 10 (6), pp 405-409

DOI: 10.5185/amlett.2019.2225

Publication Date (Web): Jan 10, 2019

E-mail: ruediger@emt.inrs.ca

Abstract

The continued evolution of electronic devices relies on the development of new semiconductor memory technology. Given the high compatibility of the Hf0.5Zr0.5O2 thin films with the CMOS technology, we investigate the charge transport mechanisms that occur in a relative thick Hf0.5Zr0.5O2 thin film (4 to 6 nm-thick) when subjected to electrical stresses. To that end we fabricate Hf0.5Zr0.5O2 heterostructures with a Pt tip as the top electrode and TiN and Pt as bottom electrode by radio-frequency magnetron sputtering. After analyzing the surface morphology of the as-received and as-deposited films by atomic force microscopy, the transfer of the desired chemical stoichiometry from the sputtering target to the substrate surface is studied by Raman spectroscopy. The ferroelectricity of the Hf0.5Zr0.5O2 thin films is confirmed by piezoresponse force microscopy measurements, and a retention of 22 h is obtained, attesting to the non-volatility of the samples. Nano-scale electrical measurements reveal the presence of resistive switching, where the low resistance state (ON state) in both Pt-tip/Hf0.5Zr0.5O2/TiN and Pt-tip/Hf0.5Zr0.5O2/Pt heterostructures can be created by the formation of a conductive filament based on oxygen vacancies.

Keywords

Electrical charge transport mechanism, Thin films, CMOS compatible, Nanoscale characterization.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM