Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 405-409, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Mark Kracklauer1, 2, Fabian Ambriz-Vargas1, Gitanjali Kolhatkar1, Bernhard Huber1, 2, Christina Schindler2, Andreas Ruediger1*

1Institut Nationale de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada

2Munich University of Applied Sciences, Department of Applied Sciences and Mechatronics, Lothstrasse 34, 80335 Munich, Germany

Adv. Mater. Lett., 2019, 10 (6), pp 405-409

DOI: 10.5185/amlett.2019.2225

Publication Date (Web): Jan 10, 2019

E-mail: ruediger@emt.inrs.ca

Abstract

The continued evolution of electronic devices relies on the development of new semiconductor memory technology. Given the high compatibility of the Hf0.5Zr0.5O2 thin films with the CMOS technology, we investigate the charge transport mechanisms that occur in a relative thick Hf0.5Zr0.5O2 thin film (4 to 6 nm-thick) when subjected to electrical stresses. To that end we fabricate Hf0.5Zr0.5O2 heterostructures with a Pt tip as the top electrode and TiN and Pt as bottom electrode by radio-frequency magnetron sputtering. After analyzing the surface morphology of the as-received and as-deposited films by atomic force microscopy, the transfer of the desired chemical stoichiometry from the sputtering target to the substrate surface is studied by Raman spectroscopy. The ferroelectricity of the Hf0.5Zr0.5O2 thin films is confirmed by piezoresponse force microscopy measurements, and a retention of 22 h is obtained, attesting to the non-volatility of the samples. Nano-scale electrical measurements reveal the presence of resistive switching, where the low resistance state (ON state) in both Pt-tip/Hf0.5Zr0.5O2/TiN and Pt-tip/Hf0.5Zr0.5O2/Pt heterostructures can be created by the formation of a conductive filament based on oxygen vacancies.

Keywords

Electrical charge transport mechanism, Thin films, CMOS compatible, Nanoscale characterization.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM