Study the possibility of using sisal fibres in building applications Study the possibility of using sisal fibres in building applications
1Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD, Australia
2Department Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
3Department of Manufacturing Engineering Technology, Public Authority for Applied Education and Training, Kuwait City, Kuwait
Adv. Mater. Lett., 2019, 10 (3), pp 222-229
DOI: 10.5185/amlett.2019.2178
Publication Date (Web): Dec 31, 2018
Copyright © IAAM-VBRI Press
E-mail: ama.alajmi1@paaet.edu.kw
In this study, the potential of utilizing natural fibres in construction substances is studied such as the compression strength and heat conductivity. Gypsum walls are reinforcement using sisal fibres for the industrial and construction applications. The sisal fibre has been washed by fresh water and treated with concentration of NaOH (6%), to achieve a real interfacial adhesion between the gypsum and sisal fibres. To survey the impact of different volume fractions of glass and sisal fibres on the conductivity of gypsum, a newly designed heat conductivity test setup was developed. Also, compressive test was carried out for the selected materials. The scanning electron microscopy (SEM) is using to figure out the failure mechanisms by examining the samples after compressive test. The test outcomes detected that the addition of fibres to the gypsum matrix enhances the compressive strength and led to minify brittleness. The optimum fibre content for sisal fibre-gypsum composite and glass fibre-gypsum composite are at 25 vol. and 30 vol. %, respectively. The pure gypsum samples have achieved the highest value of thermal conductivity among other composite samples in thermal conductivity test. The thermal conductivity of the composites reduce with the increase of fibre volume fraction for both glass and sisal addition of the fibres. Due to porous nature of sisal fibre-gypsum composites, as the presence of air voids work as traps and impeded the heat transfer, sisal fibre-gypsum composites performs better than glass fibre-gypsum composites as an insulation material.
Gypsum walls, fibre-gypsum composite, sisal fibre, glass fibre, construction materials, compression strength, thermal conductivity.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India