Cover Page March-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 3, Pages 222-229, March 2019
About Cover

The cover photo describes the scheme of the twin screw extruder for the preparation of thermoplastic starch (TPS).  As discussed by M. Paula Guarás, this screw extrusion process is very advantageous for the preparation of TPS films with improved mechanical and water vapor absorption properties in any industrial processing line for plastic packaging products. 


Study the possibility of using sisal fibres in building applications

R. Alajmi1, B.F. Yousif1, F.M. Alajmi2, A. Shalwan3*

1Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD, Australia

2Department Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA

3Department of Manufacturing Engineering Technology, Public Authority for Applied Education and Training, Kuwait City, Kuwait

Adv. Mater. Lett., 2019, 10 (3), pp 222-229

DOI: 10.5185/amlett.2019.2178

Publication Date (Web): Dec 31, 2018

E-mail: ama.alajmi1@paaet.edu.kw

Abstract

In this study, the potential of utilizing natural fibres in construction substances is studied such as the compression strength and heat conductivity. Gypsum walls are reinforcement using sisal fibres for the industrial and construction applications. The sisal fibre has been washed by fresh water and treated with concentration of NaOH (6%), to achieve a real interfacial adhesion between the gypsum and sisal fibres. To survey the impact of different volume fractions of glass and sisal fibres on the conductivity of gypsum, a newly designed heat conductivity test setup was developed. Also, compressive test was carried out for the selected materials. The scanning electron microscopy (SEM) is using to figure out the failure mechanisms by examining the samples after compressive test. The test outcomes detected that the addition of fibres to the gypsum matrix enhances the compressive strength and led to minify brittleness. The optimum fibre content for sisal fibre-gypsum composite and glass fibre-gypsum composite are at 25 vol. and 30 vol. %, respectively. The pure gypsum samples have achieved the highest value of thermal conductivity among other composite samples in thermal conductivity test. The thermal conductivity of the composites reduce with the increase of fibre volume fraction for both glass and sisal addition of the fibres. Due to porous nature of sisal fibre-gypsum composites, as the presence of air voids work as traps and impeded the heat transfer, sisal fibre-gypsum composites performs better than glass fibre-gypsum composites as an insulation material. 

Keywords

Gypsum walls, fibre-gypsum composite, sisal fibre, glass fibre, construction materials, compression strength, thermal conductivity.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM