Fabrication of Y2O3 coatings by cold-spray

Lingyan Kong1*, Rifei Han1, 2, Yang Yang1, Jiayi LI1, 2, Tianying Xiong1, Tiefan Li1

1Institute of Metal Research, Chinese Academy of Sciences

2School of Materials Science and Engineering, University of Science and Technology of China

Adv. Mater. Lett., 2019, 10 (3), pp 189-192

DOI: 10.5185/amlett.2019.2188

Publication Date (Web): Dec 31, 2018

E-mail: lykong@imr.ac.cn

Abstract


As a candidate material against plasma etching, yttrium oxide has been coated onto etching chamber by plasma spray technique. However, the plasma spray technique introduces undesirable coating properties such as porous structure and deleterious thermal effects. To reduce the disadvantage of thermal impact, cold spray was used as an alternative technology to deposit thick and dense yttrium oxide coatings.  Many studies have shown that the powders suitable for cold spray process should be with a size around 20μm. However, the Y2O3 are ceramics, it is difficult to form coatings by cold spray due to the lack of ductility when using the powders with a size about 20 μm. It is also difficult for nano-particles to get through the bow shock of cold spray process, which may cause deceleration or even deflection of lighter particles away from the surface, and therefore fail to be cold sprayed.  In this paper, we use Y2O3 with an original average size of 30 nm to form agglomerated Y2O3 particles by hydrothermal treatment. After the hydrothermal treatment, the nano-size Y2O3 agglomerated together to a size around 20 μm and then deposited by cold spray. Y2O3 coatings were forming in this way. In this research, Y2O3 nanoscale powder was tailored into a loose agglomerated structure by hydrothermal treatment, and it was found that the addition of inorganic salt promote the agglomeration process. Cold spray experiments verified the cold spray suitability of the as-modified particle. Gas temperature greatly affects the coating thickness and microstructure, and optimal spraying parameter was fixed at 600 °C. An excellent yttria coating was successfully fabricated on aluminum alloy 6061 with a maximum thickness of 200 µm and a low porosity less than 1% using compressed air as propellant gas. The loose aggregated feedstock fractured during impact instead of deformation. It is demonstrated that particle structure is key factor for ceramic deposition by cold spray technique. 

Keywords

Cold spray, ceramic coating, yttrium oxide (Y2O3).

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM