Fabrication of Y2O3 coatings by cold-spray

Lingyan Kong1*, Rifei Han1, 2, Yang Yang1, Jiayi LI1, 2, Tianying Xiong1, Tiefan Li1

1Institute of Metal Research, Chinese Academy of Sciences

2School of Materials Science and Engineering, University of Science and Technology of China

Adv. Mater. Lett., 2019, 10 (3), pp 189-192

DOI: 10.5185/amlett.2019.2188

Publication Date (Web): Dec 31, 2018

E-mail: lykong@imr.ac.cn

Abstract


As a candidate material against plasma etching, yttrium oxide has been coated onto etching chamber by plasma spray technique. However, the plasma spray technique introduces undesirable coating properties such as porous structure and deleterious thermal effects. To reduce the disadvantage of thermal impact, cold spray was used as an alternative technology to deposit thick and dense yttrium oxide coatings.  Many studies have shown that the powders suitable for cold spray process should be with a size around 20μm. However, the Y2O3 are ceramics, it is difficult to form coatings by cold spray due to the lack of ductility when using the powders with a size about 20 μm. It is also difficult for nano-particles to get through the bow shock of cold spray process, which may cause deceleration or even deflection of lighter particles away from the surface, and therefore fail to be cold sprayed.  In this paper, we use Y2O3 with an original average size of 30 nm to form agglomerated Y2O3 particles by hydrothermal treatment. After the hydrothermal treatment, the nano-size Y2O3 agglomerated together to a size around 20 μm and then deposited by cold spray. Y2O3 coatings were forming in this way. In this research, Y2O3 nanoscale powder was tailored into a loose agglomerated structure by hydrothermal treatment, and it was found that the addition of inorganic salt promote the agglomeration process. Cold spray experiments verified the cold spray suitability of the as-modified particle. Gas temperature greatly affects the coating thickness and microstructure, and optimal spraying parameter was fixed at 600 °C. An excellent yttria coating was successfully fabricated on aluminum alloy 6061 with a maximum thickness of 200 µm and a low porosity less than 1% using compressed air as propellant gas. The loose aggregated feedstock fractured during impact instead of deformation. It is demonstrated that particle structure is key factor for ceramic deposition by cold spray technique. 

Keywords

Cold spray, ceramic coating, yttrium oxide (Y2O3).

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM