Increasing the efficiency of graphene-based Schottky-barrier devices

Shuo-En Wu, Ya-Ping Hsieh*

Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 11617, Taiwan

Adv. Mater. Lett., 2019, 10 (2), pp 132-135

DOI: 10.5185/amlett.2019.2183

Publication Date (Web): Dec 19, 2018

E-mail: yphsieh@gate.sinica.edu.tw

Abstract


Graphene’s high carrier mobility and ambipolar nature has the potential to improve electronic devices. The absence of a band-gap necessitates heterostructure devices. Schottky-barrier devices consisting of an interface between graphene and a semiconductor represent the simplest heterostructure. Despite its simplicity, graphene-based Schottky barrier devices are not well understood and exhibit low injection efficiencies. We here investigate the impact of graphene/metal interaction on the properties of the Schottky-barrier. Besides the commonly employed Au/graphene we use Pt/graphene contacts. We find that the injection efficiency for Pt is 5x higher than for Au and systematically study the origin of this behavior. We identify a large difference in Richardson’s constant due to changes in the density of surface states. The demonstrated ability to increase the injection current was applied to improve the efficiency of graphene-based Schottky solar cells by 13x. 

Keywords

Graphene, schottky barrier, richardson, solar cell.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM