Cover Page February-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 2, Pages 128-131, February 2019
About Cover

The cover photo describing the crystal structure of Na5YSi4O12 with glass-ceramic Na+ superionic conductors. As discussed by Toshinori Okura, these glass-ceramic conductors have great potential and are one of the most important groups of solid electrolytes, not only because of its practical usefulness for advanced batteries but also for its three-dimensional ionic conducting nature.


Development of anti-bio deteriorate sustainable geopolymer by SiO2 NPs decorated ZnO NRs 

Manas Sarkar1*, Moumita Maiti2, Muhammad Akbar Malik1, Shilang Xu1* 

1Institute of Advanced Engineering Structures and Materials, College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China

2College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China

Adv. Mater. Lett., 2019, 10 (2), pp 128-131

DOI: 10.5185/amlett.2019.2166

Publication Date (Web): Dec 19, 2018

E-mail: manas.physju@gmail.com, slxu@zju.edu.cn

Abstract

In concrete industry, geopolymer acts as an alternative building material of ordinary cement and possess similar/greater mechanical strength and durability, fashioned by industrial by-product; fly ash with alkaline activator. Accompanied by the chemical corrosion, biogenic corrosion is a foremost obstruction in sewer systems, bridge piers, pipelines and offshore platforms. The present works has been given an effort to introduce an anti-bio deteriorate sustainable geopolymer (GMZnO–Si) through the decoration of spherical nano silica (Si) on zinc oxide Nano-rods (ZnO NRs) surface. XRD, Zeta potential, FESEM, EDS and XPS were hired for the characterization of ZnO-SiO2 nanohybrid system and applicability of GMZnO–Si mortar was investigated against microbial species (E. coli, S. aureus, A. niger). MIC/MBC/MFC values, agar plating, Inner permeability assay and ROS generation results exhibited excellent mechanistic approaches, by showing its ability to resist the biogenic degradation. The mechanical and durability activities of the GMZnO–Si are found considerably higher in respect to conventional control samples. The experimental outcomes propose a promising way to inclusion of ZnO-SiO2 modified geopolymer for biodeterioration-resistant structure with significant mechanical properties in near future. 

Keywords

ZnO-SiO2 nanohybrid, geopolymer, anti-microbial activity, durability, mechanical properties.

Current Issue

Intelligent healthcare for future medicine


Review of nanoscale layered transition metal chalcogenide superconductors


Evaluation of NSAIDs antioxidant activity on lipid peroxidation in splenocyte membranes


Morphological, structural, thermal and degradation properties of polylactic acid-waxy maize starch nanocrystals based nanocomposites prepared by melt processing


Influence of surfactant on the patterning behavior of nanosilver within polyacrylamide nanogels


Cell study of the biomimetic modifications on a CoCrMo alloy for biomedical applications


SPIONs and curcumin co-encapsulated mixed micelles based nanoformulation for biomedical applications


Fabrication of Y2O3 coatings by cold-spray


Triclinic LiVPO4F/C cathode for aqueous rechargeable lithium-ion batteries


PRAP-CVD: Up-scalable process for the deposition of PEDOT thin films


Effect of storage time, plasticizer formulation and extrusion parameters on the performance of thermoplastic starch films


Effect of silver nanoparticles on the ammonia gas sensing behavior in diphenylamine based conjugated polymer


Study the possibility of using sisal fibres in building applications


Upcoming Congress

Knowledge Experience at Sea TM