Development of anti-bio deteriorate sustainable geopolymer by SiO2 NPs decorated ZnO NRs 

Manas Sarkar1*, Moumita Maiti2, Muhammad Akbar Malik1, Shilang Xu1* 

1Institute of Advanced Engineering Structures and Materials, College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China

2College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China

Adv. Mater. Lett., 2019, 10 (2), pp 128-131

DOI: 10.5185/amlett.2019.2166

Publication Date (Web): Dec 19, 2018

E-mail: manas.physju@gmail.com, slxu@zju.edu.cn

Abstract


In concrete industry, geopolymer acts as an alternative building material of ordinary cement and possess similar/greater mechanical strength and durability, fashioned by industrial by-product; fly ash with alkaline activator. Accompanied by the chemical corrosion, biogenic corrosion is a foremost obstruction in sewer systems, bridge piers, pipelines and offshore platforms. The present works has been given an effort to introduce an anti-bio deteriorate sustainable geopolymer (GMZnO–Si) through the decoration of spherical nano silica (Si) on zinc oxide Nano-rods (ZnO NRs) surface. XRD, Zeta potential, FESEM, EDS and XPS were hired for the characterization of ZnO-SiO2 nanohybrid system and applicability of GMZnO–Si mortar was investigated against microbial species (E. coli, S. aureus, A. niger). MIC/MBC/MFC values, agar plating, Inner permeability assay and ROS generation results exhibited excellent mechanistic approaches, by showing its ability to resist the biogenic degradation. The mechanical and durability activities of the GMZnO–Si are found considerably higher in respect to conventional control samples. The experimental outcomes propose a promising way to inclusion of ZnO-SiO2 modified geopolymer for biodeterioration-resistant structure with significant mechanical properties in near future. 

Keywords

ZnO-SiO2 nanohybrid, geopolymer, anti-microbial activity, durability, mechanical properties.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM