Cover Page February-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 2, Pages 116-123, February 2019
About Cover

The cover photo describing the crystal structure of Na5YSi4O12 with glass-ceramic Na+ superionic conductors. As discussed by Toshinori Okura, these glass-ceramic conductors have great potential and are one of the most important groups of solid electrolytes, not only because of its practical usefulness for advanced batteries but also for its three-dimensional ionic conducting nature.


Polypyrrole/MWCNT nanobiocomposite based electrochemical urease biosensor

Bhavna H. Meshram, Subhash B. Kondawar*

Department of Physics, Polymer Nanotech Laboratory, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India

Adv. Mater. Lett., 2019, 10 (2), pp 116-123

DOI: 10.5185/amlett.2019.1568

Publication Date (Web): Dec 19, 2018

E-mail: sbkondawar@yahoo.co.in

Abstract

Fabrication of nanocomposite film of electrically conducting polypyrrole (PPy) and functionalized multi-walled carbon nanotubes (MWCNTs) on a stainless steel electrode by electro-deposition method and immobilization of urease onto the nanocomposite film to obtain a nanobiocomposite electrode as a sensitive electrochemical urease biosensor is reported. Cross-linking by glutaraldehyde (0.1%) method for the immobilization of urease (2 mg/mL) in a phosphate buffer solution of 0.1 molarity at a pH of 7.0 was used. The Characterization of the nanocomposite and nanobiocomposite film thus obtained was done by Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS). The increased size of the Cyclic voltammogram and shifting of anionic peaks towards the lower voltage indicates the incorporation of MWCNTs into the growing film during the electro-deposition of PPy on electrode. Reduction of the oxidation potential due to MWCNTs leads to lowering of potential for the electro-catalytic reduction of urea. The incorporation of functionalized MWCNT also made possible increased amount of enzyme concentration, an extended lifetime, long time stability and improved response times of the enzyme electrode. This modified nanobiocomposite electrode showed a good linear response to the urea concentration change in the range of 10 mM to 50 mM. The results obtained from Michaelis–Menten constant K´m, maximum current (Imax), detection limit, sensitivity, response time and shelf-life of electrochemical biosensor indicating good sensing for urea detection. 

Keywords

Electrochemical biosensor, conducting polymers, polypyrrole, multi-walled carbon nanotubes, urease.

Current Issue

Current Global Scenario of Electric Vehicles


Review on Detection of Phenol in Water 


Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review


Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight


Plasma Activated Water as a Source of Nitrogen for Algae Growth


Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application


Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System


Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources


Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method


Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance


Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye


Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 


Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect


Previous issues

Wearable Healthcare Devices

Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review

Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review

Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element

Plasma Activated Water Generation and its Application in Agriculture

Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 

Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels

Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity

Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes

Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties

Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency

Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies

Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Upcoming Congress

Knowledge Experience at Sea TM