Cover Page February-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 2, Pages 112-115, February 2019
About Cover

The cover photo describing the crystal structure of Na5YSi4O12 with glass-ceramic Na+ superionic conductors. As discussed by Toshinori Okura, these glass-ceramic conductors have great potential and are one of the most important groups of solid electrolytes, not only because of its practical usefulness for advanced batteries but also for its three-dimensional ionic conducting nature.

Molecular origin of hardening effect 

Weifu Sun*, Pengwan Chen

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China  

Adv. Mater. Lett., 2019, 10 (2), pp 112-115

DOI: 10.5185/amlett.2019.2187

Publication Date (Web): Dec 19, 2018



Hardening effect is often observed in either experiments or simulations. And several continuum models or semi-empirical theories have been proposed to explain the origin, such as constraint-counting theory, the bond-order-length-strength (BOLS) correlation mechanism, equations of state-Murnaghan relationship, etc. However, the validity of these models or theories at the nanoscale have not been tested. In this work, high-speed head-on impact between silicon nanoparticles were studied using molecular dynamics (MD) simulations and their contact mechanics behaviours including contact force versus nominal displacement relationship were explored and the pronounced hardening effect was clearly observed. That’s, apparent Young’s modulus yielded is much higher than that of their bulk materials. The structure of silicon nanoparticles after compression was analysed in terms of bond length, bond angle, coordination number. The three existing relevant models were separately examined. The results show that any single of the three known theories cannot explain the higher elastic modulus obtained in present MD simulation. Probably, the three aspects contribute together to the hardening effect. This area awaits much more mature theory to explain the hardening effect under the influence of the dynamic effect.


Hardening effect, molecular simulation, continuum model.

Current Issue

Intelligent healthcare for future medicine

Review of nanoscale layered transition metal chalcogenide superconductors

Evaluation of NSAIDs antioxidant activity on lipid peroxidation in splenocyte membranes

Morphological, structural, thermal and degradation properties of polylactic acid-waxy maize starch nanocrystals based nanocomposites prepared by melt processing

Influence of surfactant on the patterning behavior of nanosilver within polyacrylamide nanogels

Cell study of the biomimetic modifications on a CoCrMo alloy for biomedical applications

SPIONs and curcumin co-encapsulated mixed micelles based nanoformulation for biomedical applications

Fabrication of Y2O3 coatings by cold-spray

Triclinic LiVPO4F/C cathode for aqueous rechargeable lithium-ion batteries

PRAP-CVD: Up-scalable process for the deposition of PEDOT thin films

Effect of storage time, plasticizer formulation and extrusion parameters on the performance of thermoplastic starch films

Effect of silver nanoparticles on the ammonia gas sensing behavior in diphenylamine based conjugated polymer

Study the possibility of using sisal fibres in building applications

Upcoming Congress

Knowledge Experience at Sea TM