Cover Page February-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 2, Pages 107-111, February 2019
About Cover

The cover photo describing the crystal structure of Na5YSi4O12 with glass-ceramic Na+ superionic conductors. As discussed by Toshinori Okura, these glass-ceramic conductors have great potential and are one of the most important groups of solid electrolytes, not only because of its practical usefulness for advanced batteries but also for its three-dimensional ionic conducting nature.


Tuning Polydimethylsiloxane (PDMS) properties for biomedical applications

Etienne Mfoumou1*, 2, Martin Tango2, Pak Kin Wong3 

1Applied Research & Innovation, Nova Scotia Community College, Ivany Campus, Dartmouth, NS, B2Y 0A5, Canada

2Ivan Curry School of Engineering, Acadia University, Wolfville, NS, B4P 2R6, Canada

3PennState College of Engineering, Pennsylvania State University, University Park, PA 16802, USA

Adv. Mater. Lett., 2019, 10 (2), pp 107-111

DOI: 10.5185/amlett.2019.2130

Publication Date (Web): Dec 19, 2018

E-mail: etienne.mfoumou@nscc.ca

Abstract

Polydimethylsiloxane (PDMS) is used extensively to study cell-substrate interactions because its mechanical properties are easily tuned in physiologically relevant ranges. These changes in mechanical properties are also known to modulate surface chemistry and cell response. In this study, PDMS pre-polymer was combined with increasing amounts of cross-linker (3.3, 5.0, 10.0, 12.5, 20.0 and 33.3 wt.%). The solutions were mixed in sterile conditions and degassed, then poured into 60 mm cell culture dishes to a depth of 1 mm. This was followed by curing at a constant temperature of 75 oC for 2 hours. The PDMS substrates were then exposed to an air plasma for 10 minutes. All substrates were exposed to UV light for further sterilization and understanding of the structure/morphology of the substrates was obtained with microscopic techniques. A SH-SY5Y neuroblastoma cell line was used in cell culture experiment. Cells were plated at a concentration of 300 x 106 cells/dish on plasma treated PDMS substrates and incubated at 37 oC in a humidified 5 % CO2 environment. For the assessment of morphological changes, images of cells growing on each substrate were captured using an inverted phase contrast microscope. Cell adhesion as well as immunofluorescence analyses were conducted, and the mechanical as well as surface properties of PDMS were correlated to neuroblastoma cell behaviour. The results reveal that the physicality of the extracellular matrix/environment (ECM) substrate governs cell behavior regardless of hormones, cytokines, or other soluble regulatory factors. The approach used in this study may open up new avenues in translational medicine and pharmacodynamics research. 

Keywords

Polydimethylsiloxane, cell-substrate interactions, cell culture, cell transdifferentiation, mechanical and surface properties.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM