Chair of Machine Tools and Manufacturing Technology, Institute for Machine Tools and Factory Management (IWF), Technische Universität Berlin, Pascalstraße 8-9, Berlin, 10587, Germany
Adv. Mater. Lett., 2019, 10 (1), pp 02-08
DOI: 10.5185/amlett.2019.2231
Publication Date (Web): Dec 10, 2018
Copyright © IAAM-VBRI Press
E-mail: patrick.john@iwf.tu-berlin.de
The main advantages of cutting with liquid jets are the flexibility and consistently sharpness of the tool, which allows the machining of a variety of materials and complex shapes. Unfortunately, the humidification of the components can be a problem for certain applications and inhibits the spread of jet technology. Besides, the dry and residue-free cutting of materials is an important topic of today’s research in manufacturing engineering. Due to these advantages, high-pressure liquid CO2 jet cutting has the potential to open new fields of applications in which water jet cutting is not suitable. The liquid CO2 jet with a pressure of up to 300 MPa can be used to machine various materials and functional surfaces before it expands to gas and atmospheric pressure. However, the transition from liquid to gaseous phase implicates density differences which change the cutting performance. As a result, the knowledge about waterjets cannot be adapted to CO2 jets and further investigations are necessary. A new test stand was put into operation and a feed line with abrasives was added. Technological investigations concerning the formation of kerfs with high-pressure liquid CO2 and water jets were performed with and without abrasives as well as subsequently analyzed. The cutting tests were carried out on parts of various metals and technical plastics. The influence of the fluid on the attained cutting surfaces and kerfs produced by the jet was investigated. The experiments indicate that the performance of the CO2 jet as well as of the waterjet depends mainly on pressure and nozzle diameter but show different separation behavior. Especially the impact of the working distance will be discussed. The investigations reveal that high-pressure liquid CO2 jet cutting has a high potential in the field of dry and residue-free cutting of metals, technical plastics and CFRP. Furthermore, no temperature influence was observed and the potential for jet cutting in 3D-applications and for hollow profiles was proven.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study