Cover Page January-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 1, Pages 35-40, January 2019
About Cover

The cover photo describes the graphical representation of a wearable device. Recently, the interest in wearable devices is rapidly growing with its wide applications in the wide area of disease detection and monitoring, wellness monitoring, implantable electronics, military operations etc.

Hybrid EEG-EMG based brain computer interface (BCI) system for real-time robotic arm control

Saad Abdullah, Muhammad A. Khan*, Mauro Serpelloni, Emilio Sardini

Department of Information Engineering, University of Brescia, Via Branze 38, Brescia, 25123, Italy

Adv. Mater. Lett., 2019, 10 (1), pp 35-40

DOI: 10.5185/amlett.2019.2171

Publication Date (Web): Dec 10, 2018



Nowadays, bio-signal based BCI systems are widely being used in healthcare systems and hence proven to be an effective tool in rehabilitation engineering to assist disabled people in improving their quality of life [1]. In this research work, handicapped people with above hand amputee have been targeted and hence non-invasive EEG and EMG biosensors are used to design wireless hybrid BCI system. The presented hybrid system is able to control real-time movement of robotic arm via combined effect of brain waves (attention and meditation mind states) and wrist muscles movements of healthy arm as command signal. The system operates the robotic arm within 3 degree of freedom (DOF) motion which corresponds to movement of shoulder (internal and external rotation), elbow (flexion and extension) and wrist (Gripper open and close) joint. It has been experimentally tested on 4 subjects with upper limb amputee (having one healthy arm) after training period of one day. On receiving the input signals from EEG and EMG sensors, subjects have successfully controlled the movements of the robotic arm with accuracy of 70% to 90%. In order to validate the obtained results, a potentiometer has been fixed on robotic arm and angular motion of shoulder and elbow joint is recorded (actual motion) and compared with results of the BCI system (required motion). The comparison shows high resemblance between actual and required motion which reflects the reliability of the system. In addition, apart from robotic prototype, its 2D modelled is also designed on visual studio. The presented preliminary experimental results show that the motorized prosthetic prototype movement due to mind and muscle control is in accordance with the 2D modelled virtual arm permitting to improve its real-time adoption for rehabilitation. 


Rehabilitation Engineering, Electroencephalogram (EEG), Electromyogram (EMG), Brain Computer Interface (BCI) system, robotic arm.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM