Influence factors on the comminution process of wood for the production of precursors and basic chemicals for the chemical industry Influence factors on the comminution process of wood for the production of precursors and basic chemicals for the chemical industry
Technische Hochschule Nuremberg Georg Simon Ohm Fakultät Verfahrenstechnik, Forschungsgruppe, “Partikeltechnologien, Rohstoffinnovationen und Ressourceneffizienz” (FPR), Wassertorstraße 10, 90489 Nürnberg, Germany
Adv. Mater. Lett., 2019, 10 (1), pp 21-28
DOI: 10.5185/amlett.2019.2150
Publication Date (Web): Dec 10, 2018
Copyright © IAAM-VBRI Press
E-mail: moritz.eisenlauer@th-nuernberg.de
The upstream process of comminution is a key element in the use of renewable raw materials, which impacts the consecutive disintegration of the materials. Energy efficiency of the comminuition process is therefore of utmost importance. The key factors to increase energy efficiency are, beside the mill type and the mill operation factors, the species of the renewable resource, in terms of water contend and the mechanical properties which are the dominant factors in biomass size reduction. In this study the influence of different factors on the effective specific comminution energy (ESCE) is elucidated. For theses purpose, three types of raw wood chips as well as recycled wood of two different qualities, were comminuted with a cutting mill and a swing hammer mill. The materials were comminuted at several levels of moister contend, under varied opening sizes of the internal screen of the mills. Particle size distributions of the comminuted materials were examined with sieve analyses and dynamic image analysis. Especially, the moister content directly influences the ESCE and the particle size distribution. Moreover the type of material, due to its different mechanical properties, is of significant influence on the particle size distribution and the ESCE.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India