Technische Hochschule Nuremberg Georg Simon Ohm Fakultät Verfahrenstechnik, Forschungsgruppe, “Partikeltechnologien, Rohstoffinnovationen und Ressourceneffizienz” (FPR), Wassertorstraße 10, 90489 Nürnberg, Germany
Adv. Mater. Lett., 2019, 10 (1), pp 21-28
DOI: 10.5185/amlett.2019.2150
Publication Date (Web): Dec 10, 2018
Copyright © IAAM-VBRI Press
E-mail: moritz.eisenlauer@th-nuernberg.de
The upstream process of comminution is a key element in the use of renewable raw materials, which impacts the consecutive disintegration of the materials. Energy efficiency of the comminuition process is therefore of utmost importance. The key factors to increase energy efficiency are, beside the mill type and the mill operation factors, the species of the renewable resource, in terms of water contend and the mechanical properties which are the dominant factors in biomass size reduction. In this study the influence of different factors on the effective specific comminution energy (ESCE) is elucidated. For theses purpose, three types of raw wood chips as well as recycled wood of two different qualities, were comminuted with a cutting mill and a swing hammer mill. The materials were comminuted at several levels of moister contend, under varied opening sizes of the internal screen of the mills. Particle size distributions of the comminuted materials were examined with sieve analyses and dynamic image analysis. Especially, the moister content directly influences the ESCE and the particle size distribution. Moreover the type of material, due to its different mechanical properties, is of significant influence on the particle size distribution and the ESCE.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study