Electronic scale properties of pristine stanene and tin forms using ab-initio methods 

T Chaitanya Sagar, Viswanath R Chinthapenta*

Micro-Mechanics Laboratory, Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India

Adv. Mater. Lett., 2019, 10 (1), pp 74-78

DOI: 10.5185/amlett.2019.2154

Publication Date (Web): Dec 10, 2018

E-mail: viswanath@iith.ac.in


In the current study, elastic properties of stanene, a hexagonal honeycomb allotrope of tin is investigated using tools in computational material science. The simulations are performed using Quantum Espresso, an open-source package suit used for conducting ab-initio density functional theory simulations. The lattice structure of stanene analogous to the other group-IV elements 2D structures like graphene, silicene, and germanene. The relaxed structure of stanene in hexagonal honeycomb structure is found to have a lattice parameter .  Unlike pristine graphene which has no buckling, stanene structure shows a buckling . All the calculations are carried out using generalized gradient approximation (GGA), and the exchange-correlation is treated using Perdew-Burke-Ernzerhof (PBE) functional. The cohesive energy of the structure is found to be . The calculations are conducted at groundstate without the inclusion of spin orbit coupling. The band structure, total and partial density of states at the ground state reveal the conducting nature of stanene. In addition, the second order elastic constants evaluated are reported and compared with the -tin and -tin counterparts. 


Stanene, 2D Materials, Density Functional Theory (DFT), Second Order Elastic Constants (SOEC), Quantum Espresso (QE).

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM