Cover Page April-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 4, Pages 253-258, April 2019
About Cover

The cover photo describes the ring topological structure of carbon nucleus (using vortex-fractal-ring theory), which consists from two globules with 3 protons globule substructures. As discussed by, this vortex-fractal-ring theory is a new and original view of elementary particles and the structure of atomic nuclei, atoms, and molecules. Its basics are simple for understanding through the comprehensive topological structure that does not need description by complicated mathematical formulas. This theory together with grammatical evolution can design new models of nanostructures and allows us to understand the fundamental physical and chemical reasons for the stability and reactivity of atoms and molecules.

(FeCo/Ppy@C): Pt-free FeCo-Polypyrrole Nanocomposites Supported on Porous Carbon for Electrochemical Application

Francesca Fiorellino, Martina Pilloni, Andrea Ardu, Valentina Cabras, Stefano Columbu, Lisa Russo, Alessandra Scano*, Guido Ennas*

Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy

Adv. Mater. Lett., 2019, 10 (4), pp 253-258

DOI: 10.5185/amlett.2018.2203

Publication Date (Web): Oct 26, 2018



The synthesis and characterization of pyrolyzed carbon-supported transition metal/nitrogen (M–Nx/C) material based on FeCo alloy and Polypirrol as source of N atoms are presented. Two different synthetic protocols, a multi-step and a novel one pot single-step approach are compared. In both approaches two different Fe:Co ratio (50:50 and 75:25) were used to obtain Pt-free FeCo-Polypyrrole nanocomposites supported on porous carbon (FeCo/Ppy@C). Structural and morphological characterizations of the samples before and after pyrolysis were carried out by using X-Ray Powder Diffracion, Infrared Spectroscopy and High-Resolution Transmission Electron Microscopy. For both approaches, nanoparticles with a core shell structure but different size and matrix polidispersivity were observed after pyrolysis when a Fe:Co 50:50 ratio was used. Bigger nanoparticles were obtained after pyrolysis in the 75:25 ratio samples, with no significant differences between the two approaches. The electrocatalytical properties of the final samples, investigated by cyclic voltammetry in an acidic electrolyte, showed the presence of a cathodic current density.


Proton electrolyte membrane fuel cell, non-precious metal catalysts, oxygen reduction reaction (ORR), Pt-free electrocatalysts, conductive polymers, catalytic hydrogen production.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM