Cover Page April-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 4, Pages 284-293, April 2019
About Cover

The cover photo describes the ring topological structure of carbon nucleus (using vortex-fractal-ring theory), which consists from two globules with 3 protons globule substructures. As discussed by, this vortex-fractal-ring theory is a new and original view of elementary particles and the structure of atomic nuclei, atoms, and molecules. Its basics are simple for understanding through the comprehensive topological structure that does not need description by complicated mathematical formulas. This theory together with grammatical evolution can design new models of nanostructures and allows us to understand the fundamental physical and chemical reasons for the stability and reactivity of atoms and molecules.

Silver nanoparticles mediated by extract of Guar plant (Cyamopsis tetragonoloba), and evaluation of their photocatalytic and antibacterial properties

Elias E. Elemike1, 2, 3 , Saiyed Tanzim1, 2, Anthony C. Ekennia4, Damian C. Onwudiwe1, 2*

1Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

2Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

3Department of Chemistry, College of Science, Federal University of Petroleum Resources,  P.M.B 1221, Effurun, Delta State, Nigeria

4Department of Chemistry, Alex Ekwueme Federal University Ndufu-Alike, PMB 1010, Abakaliki, Ebonyi State, Nigeria

Adv. Mater. Lett., 2019, 10 (4), pp 284-293

DOI: 10.5185/amlett.2018.2198

Publication Date (Web): Oct 26, 2018



The green synthesis of silver nanoparticles using Cyamopsis tetragonoloba plant extract and their photocatalytic and antibacterial properties is reported. Three precursor concentrations of 1 mM, 2 mM and 5 mM were used, and at two different ratios of 1:5 and 1:10 plant extract to the precursor. The formation of the nanoparticles was followed by the periodic study of surface plasmon resonance using the UV-visible spectroscopy, which revealed the formation of nanoparticles with regular bands after 45 min. of reaction. Fourier transform infrared spectroscopy was used to study the functional groups present in the plant biomolecules which aided the reduction and stabilization of the nanoparticles. Transmission electron microscopy analysis and X-ray diffraction pattern showed the particle sizes and crystalline structures, while the zeta potential values indicated the stability of the nanoparticles. The 5 mM concentration gave the largest particle sizes of about 12.90 nm and the most stable particles. The photocatalytic properties of the particles studied using Methyl red showed a low efficiency of 17.85% degradation achieved under 2 h. The antibacterial potency of the nanoparticles was screened against some gram-negative and gram-positive bacteria. The results showed that the nanoparticles have good antibacterial activities.


Silver nanoparticles, green synthesis, photocatalysis, antibacterial.

Current Issue

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Previous issues

Artificial intelligence and machine learning empowering the mass medicine

Piezo-therapy in cancer: Current research and perspectives

Magnetic microwires for sensor applications

A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale

Fabrication and characterization of nano-bridge Josephson junction based on Fe0.94Te0.45Se0.55 thin film

Riboflavin-UVA gelatin crosslinking: Design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering

Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes

Ionic liquid [BMIM][Cl] immobilized on cellulose fibers from pineapple leaves for desulphurization of fuels

Synthesis and role of co-dopants (alkaline earth divalents and halides) on the photoluminescence of Eu2+ doped BaAl2O4 phosphor

Metal oxide (V2O5) incorporated fly ash based geopolymer for better sustainable engineering composites

Highly efficient storage of solar gains using aluminum foam heat exchangers  

Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity

Effect of diamantane on the thermal stability of cryomilled aluminum alloy

Upcoming Congress

Knowledge Experience at Sea TM