Cover Page December-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 12, Pages 895-901, December 2018
About Cover

Researcher of the Year 2018 - Professor T. Venkatesan. The advanced materials community would like to take this opportunity to pay rich tributes to Professor T. Venkatesan for his pioneering research and notable contributions to nanoscience and nanotechnology. Advanced Materials Letters have been selected his photo for the cover of this special year-end issue.


PtSn/C electrocatalysts modified with Ni and Ga for the ethanol electrooxidation   

Giordano T. Paganoto, Josimar Ribeiro*

Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, CEP.: 29075-910, Vitória, Espírito Santo, Brazil

Adv. Mater. Lett., 2018, 9 (12), pp 895-901

DOI: 10.5185/amlett.2018.1875

Publication Date (Web): Sep 14, 2018

E-mail: joagrothur@yahoo.com.br

Abstract

Ni and Ga elements are inexpensive compared to the Pt. Ni and NiOx have been recognized to have potential applications in ethanol electrooxidation. For these reasons and based on previous results obtained with Ga addition on Pt-based electrocatalysts we have investigated the PtSn/C electrocatalysts modified with Ni and Ga. The PtSnNiGa/C electrocatalysts were characterized in acidic medium by electrochemical techniques and by physicochemical techniques such as: X-ray diffraction; Energy dispersive X-ray spectroscopy; Transmission electron microscopy. Based on the TEM analyses, the PtSnNiGa/C electrocatalysts show average particle sizes range between 3.6 – 5.5 nm, which is consistent with XRD data. The ethanol oxidation on the PtSnNiGa/C electrocatalysts occurs at lower potentials as compared to the Pt/C. The higher current normalized by Pt mass (2.62 Ag-1Pt), lower susceptibility to poisoning anodic and charge transfer resistance (245 Ω) were obtained for the Pt45Sn22Ni21Ga12/C electrocatalyst.The current normalized by Pt mass: Pt50Sn26Ni12Ga12/C (2.8 Ag-1Pt); Pt45Sn22Ni21Ga12/C (2.62 Ag-1Pt); Pt52Sn21Ni18Ga9/C (1.63 Ag-1Pt) and Pt43Sn23Ni11Ga22/C (1.27 Ag-1Pt) electrocatalysts are higher compared to binary catalysts with high Pt content. The promotion effect of PtSnNiGa/C to ethanol electrooxidation can be explained by the modification structural of Pt by incorporation of Sn, Ni and/or Ga to the face-centered cubic crystalline of Pt.

Keywords

Ethanol oxidation reaction, gallium, platinum, fuel cells, quaternary electrocatalysts.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM