Cover Page December-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 12, Pages 880-884, December 2018
About Cover

Researcher of the Year 2018 - Professor T. Venkatesan. The advanced materials community would like to take this opportunity to pay rich tributes to Professor T. Venkatesan for his pioneering research and notable contributions to nanoscience and nanotechnology. Advanced Materials Letters have been selected his photo for the cover of this special year-end issue.


ZnSn(OH)6 nanocubes as a high-performance anode for lithium-ion batteries

Qian Yang1, Zhibin Wu2, 3*, Zhijian Wang1, Wei Liu1, Jianwen Liu1, Chuanqi Feng1, Wei Sun4, Haimin Zhao4, Zaiping Guo1, 2, 3

1Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062, China

2School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, New South Wales 2500, Australia

3Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia

4Tianneng Battery Group  Co.  Ltd, 18 Baoqiao Road,  Huaxi  Industrial  Functional Zone, Changxing, Zhejiang, 313100, China

Adv. Mater. Lett., 2018, 9 (12), pp 880-884

DOI: 10.5185/amlett.2018.2143

Publication Date (Web): Sep 14, 2018

E-mail: zguo@uow.edu.au

Abstract

Single-phase bi-metal oxides and sulfides have attracted considerable research interest recently for battery application because of their outstanding electrochemical properties, but there are few reports on single-phase bi-metal hydroxides in battery research. Herein, we pioneer the electrochemical study of ZnSn(OH)6 nanocubes for lithium-ion battery application. The ZnSn(OH)6 nanocubes, synthesized by a facile hydrothermal method, can deliver a favorable specific discharge capacity of 599.3 mA h g-1 at 500 mA g-1 after 200 cycles and maintain good rate capability even at 2 A g-1. The excellent electrochemical performance of these ZnSn(OH)6 nanocubes can be attributed to the synergetic Li storage capability of Zn and Sn elements with diverse electrochemical reactions, the small uniform nanocubes (30−50 nm) that alleviate the pulverization and cracking of the electrode and shorten electron/ion transport paths, and the good mechanical properties of ZnSn(OH)6, which facilitate maintenance of the structural integrity of the electrode during the Li+ extraction/insertion process. Therefore, with these outstanding advantages, the ZnSn(OH)6 nanocubes could be one of the most promising anodes for advanced lithium-ion batteries.

Keywords

ZnSn(OH)6, bi-metal hydroxides, lithium-ion batteries, anode.

Current Issue

Wearable Healthcare Devices


Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review


Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review


Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element


Plasma Activated Water Generation and its Application in Agriculture


Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 


Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels


Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity


Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes


Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties


Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency


Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies


Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles


Upcoming Congress

Knowledge Experience at Sea TM