Biocomposites based on plant material Biocomposites based on plant material
1IWK Institute for Materials Technology and Plastics Processing, HSR University of Applied Sciences Rapperswil, Oberseestrasse 10, 8640 Rapperswil, Switzerland
2IMWT Institute for Materials and Wood Technology, BFH Bern University of Applied Sciences, Solothurnstrasse 102, 2502 Biel/Bienne, Switzerland
Adv. Mater. Lett., 2018, 9 (12), pp 876-879
DOI: 10.5185/amlett.2018.2165
Publication Date (Web): Sep 14, 2018
Copyright © IAAM-VBRI Press
E-mail: gionandrea.barandun@hsr.ch
Fibre reinforced composite materials offer superior specific mechanical properties in reference to their weight. In the past years, composite materials such as carbon or glass reinforced plastics (CFRP or GFRP) are used increasingly in all sectors of transportation and for industrial or leisure products. The composite consists of a load bearing fibre architecture, usually in the form of a continuous fabric architecture, and an embedding matrix, usually a thermoset such as epoxy. With regard to the energy efficiency and carbon footprint, due to their lightweight nature, these composite materials in general offer interesting properties, if applied in long-term operations. However, the raw materials used for the production of both typical fibre materials and thermoset resins are still based on crude oil, and the refining and processing up to the semi-finished good consume a significant amount of embodied energy. In this study, composites made of glass or flax fibres and resin systems based on condensed tannin and furfuryl alcohol, both extracted or derived from plant tissues, were manufactured using vacuum infusion (VI) and resin transfer moulding (RTM) processes. The results show that mechanical properties close to common fiber/resin combinations like glass fiber and epoxy or phenolic resins can be reached by these materials.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India