New material architectures through graphene nanosheet assembly

Muchun Liu1, 2, Cintia Juliana Castilho1, Robert H. Hurt1*

1School of Engineering, Brown University, 182 Hope St, Providence, 02912, USA

2Department of Chemistry, Brown University, 324 Brook Street, Providence, 02912, USA

Adv. Mater. Lett., 2018, 9 (12), pp 843-850

DOI: 10.5185/amlett.2018.2025

Publication Date (Web): Sep 14, 2018



Over the last decade, graphene research has developed into a large and multi-faceted field concerned with the synthesis, structure, properties, and applications of various ultrathin sheet-like carbon forms. This article presents a historical perspective on ultrathin carbons, and on the traditional role of the “graphene layer” as a conceptual model for describing crystalline polymorphs in sp2-based carbon materials. Bulk carbons can often be usefully modelled as physical assemblies of distinct graphene layers whose length, curvature, packing, and orientation determine carbon properties and their observed anisotropy. The article then gives a brief perspective on the emerging subfield of graphene research that uses nanosheets as physical building blocks to assemble new material architectures. In analogy with macroscopic sheets of paper or fabric, graphene nanosheets can be manipulated by stacking, wrapping, folding, wrinkling, or crumpling, to make novel carbons not accessible through traditional routes based on molecular or solid-state precursors. These include aerogels, crumpled particles, encapsulation sacks, and a variety of engineered films structures that can be planar or microtextured. While much work has been done in this graphene subfield, important research opportunities remain. Among these are the creation of hybrid structures involving graphene nanosheets systematically combined with other substances to form graphene-molecular hybrids, graphene-nanoparticle hybrids (2D-0D), graphene-nanofiber hybrids (2D-1D), and nanosheet heterostructures (2D-2D).


Graphene nanosheet, historical development, structural assemblies, translating.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM