New material architectures through graphene nanosheet assembly

Muchun Liu1, 2, Cintia Juliana Castilho1, Robert H. Hurt1*

1School of Engineering, Brown University, 182 Hope St, Providence, 02912, USA

2Department of Chemistry, Brown University, 324 Brook Street, Providence, 02912, USA

Adv. Mater. Lett., 2018, 9 (12), pp 843-850

DOI: 10.5185/amlett.2018.2025

Publication Date (Web): Sep 14, 2018

E-mail: robert_hurt@brown.edu

Abstract


Over the last decade, graphene research has developed into a large and multi-faceted field concerned with the synthesis, structure, properties, and applications of various ultrathin sheet-like carbon forms. This article presents a historical perspective on ultrathin carbons, and on the traditional role of the “graphene layer” as a conceptual model for describing crystalline polymorphs in sp2-based carbon materials. Bulk carbons can often be usefully modelled as physical assemblies of distinct graphene layers whose length, curvature, packing, and orientation determine carbon properties and their observed anisotropy. The article then gives a brief perspective on the emerging subfield of graphene research that uses nanosheets as physical building blocks to assemble new material architectures. In analogy with macroscopic sheets of paper or fabric, graphene nanosheets can be manipulated by stacking, wrapping, folding, wrinkling, or crumpling, to make novel carbons not accessible through traditional routes based on molecular or solid-state precursors. These include aerogels, crumpled particles, encapsulation sacks, and a variety of engineered films structures that can be planar or microtextured. While much work has been done in this graphene subfield, important research opportunities remain. Among these are the creation of hybrid structures involving graphene nanosheets systematically combined with other substances to form graphene-molecular hybrids, graphene-nanoparticle hybrids (2D-0D), graphene-nanofiber hybrids (2D-1D), and nanosheet heterostructures (2D-2D).

Keywords

Graphene nanosheet, historical development, structural assemblies, translating.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM