Staking lay-up effect on dynamic compression behaviour of e-glass/epoxy composite materials: experimental and numerical investigation Staking lay-up effect on dynamic compression behaviour of e-glass/epoxy composite materials: experimental and numerical investigation
1ENSTA Bretagne, IRDL - UMR CNRS 6027, F-29200 Brest, France
2University of Dayton, Nanomaterials Laboratory, Dayton, OH 45469-0168, United States
3Laboratory for Renewable Energy and Dynamic Systems, FSAC - UH2C, Morocco
Adv. Mater. Lett., 2018, 9 (11), pp 816-822
DOI: 10.5185/amlett.2018.2060
Publication Date (Web): Jul 25, 2018
Copyright © IAAM-VBRI Press
E-mail: mourad.nachtane@gmail.com
Several industrial applications have exposed polymer matrix composite materials to a very high strain rate loading conditions, requiring an ability to understand and predict the material behaviour under these extreme conditions. Many composite aircraft structures such as fuselage, wing skins, engine nacelles and fan blades are situated such that impacts at high strain rates are a realistic threat. To investigate this threat, high velocity impact experiments and subsequent numerical analysis were performed in order to study the compressive loading of composite materials at high strain rates. Specimens are subjected with various orientations from low to high strain rates to determine the compressive material properties. Three fibre orientations such as: ±20°, ±60° and 90° of cubic geometry are tested in in-plane direction. The tests show a strong material sensitivity to dynamic loading and fibre direction. In the second part, the FEA results of the dynamic tests resulting in no damage appeared satisfactory. The FEA gives results which are in coherence with the experimental data. The improved understanding of these phenomena and the development of predictive tools is part of an ongoing effort to improve the long-term integrity of composite structures under dynamic loads.
Composites, dynamic compression, experimental approach, finite element modelling.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India