Cover Page October-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 10, Pages 737-747, October 2018
About Cover

The cover describes the development of nanofibers with encapsulated growth factors has been emerged as a promising approach in neo-tissues applications. The proposed nanofibrous systems provide a novel approach to both simulate the extra-cellular matrix for cell adhesion and also for localized delivery of signaling molecules and growth factors. Growth factors could be loaded into nanofibers using different techniques including physical adsorption, covalent bonding or encapsulation.


Redox-active cerium oxide based nanozyme abrogate the organophosphate mediated poisoning in mammalian cells

Kinjal D. Shah, Ragini Singh, Sanjay Singh*

Division of Biological and Life Sciences, School of Arts and Science, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India

Adv. Mater. Lett., 2018, 9 (10), pp 737-747

DOI: 10.5185/amlett.2018.1939

Publication Date (Web): Jul 18, 2018

E-mail: sanjay.singh@ahduni.edu.in

Abstract

Owing to the autocatalytic antioxidant activity, cerium oxide nanoparticle (CeNPs) has been extensively used in biomedical fields for treatment of neurodegenerative diseases, biosensing, and therapeutic applications. The redox-dependent interconversion between +3 and +4 oxidation states of CeNPs is suggested to be the reason of scavenging of free radical generated in the biological system. Herein we have explored the protective effect of CeNPs against the oxidative stress induced by organophosphate-based pesticide, 2,2-dichlorovinyl dimethyl phosphate (DDVP), in a normal human liver cell culture model (WRL-68). DDVP is known to cause the toxic effect in cells by inducing lipid peroxidation, cellular glutathione level depletion and DNA fragmentation by the caspase-dependent pathway. We followed the protection of cells by CeNPs against DDVP exposure using MTT and NRU assays. Exposure of DDVP to cells induced significant nuclear fragmentation, which could be avoided in cells pre-treated with CeNPs. Mechanistically, we observed that CeNPs induces an increase in cellular GSH level, which could assist in removal of excess of reactive oxygen species, generated in DDVP exposed cells, along with the superoxide dismutase (SOD)-like activity of CeNPs. The interaction study showed that there was no chemical interaction between DDVP and CeNPs, therefore, the intrinsic SOD-like activity of CeNPs was intact even in the complex cell culture media. Growing evidence suggest that excess use of DDVP could lead to the several diseases in cells/tissues, therefore our finding emphasizes that CeNPs can be used as a potent antioxidant agent to avoid the ramifications of DDVP and other commercial pesticides. 

Keywords

Nanozymes, superoxide-dismutase, organophosphate, Dichlorvos Pesticide (DDVP), antioxidant nanoparticles, oxidative stress.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM