Reducing edge effect of temperature-field for large area thin film deposition in hot filament chemical vapor deposition system

Lin Li1, 3, Shibing Tian1, 3, Ruhao Pan1, 3, Chao Wang1, 3, Chi Sun1, 3, Junjie Li1, 3*, Changzhi Gu1, 2, 3*

1Beijing National Laboratory for Condensed Matter Physics, Institution of Physics Chinese Academy of Sciences, Beijing 100190, China

2Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China

3School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China

Adv. Mater. Lett., 2018, 9 (10), pp 727-732

DOI: 10.5185/amlett.2018.2146

Publication Date (Web): Jul 18, 2018

E-mail: czgu@iphy.ac.cn

Abstract


The uniformity in temperature-field of the hot filament chemical vapor deposition (HFCVD) system is of great importance since it is a critical parameter that determines the quality of the deposited films. In fact, the temperature-field is mainly filament distribution dependent. In conventional analysis method, the filament array usually has an equal-space distribution, which leads to a remarkable edge effect and consequently unable to obtain large area uniformity in temperature-field in HFCVD for high-quality thin film deposition. Here, we proposed theoretically an asymmetrical filament distribution to reduce the edge-effect of temperature field. The adjacent filament distance was optimized by using numerical simulation based on heat-transfer theory. Based the optimized condition, temperature difference as low as 13 K between the center and edge region of the filament arrays can be achieved in 100-mm substrate, which is only one tenth of the temperature difference of that in the case that the filaments were evenly distributed. Thus unequal-space distribution can be employed to enhance the uniformity in temperature field of the HFVCD system in favor of the growth of high quality thin films in large area.

Keywords

Hot filament, chemical vapor deposition, temperature-field, thin film.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM