Enhancing absorption in thin film organometal trihalide perovskite solar cell by photon recycling

Abhinav Bhatnagar*, Vijay Janyani

Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jawahar Lal Nehru Marg, Jaipur, 302017, India

Adv. Mater. Lett., 2018, 9 (10), pp 721-726

DOI: 10.5185/amlett.2018.2108

Publication Date (Web): Jul 18, 2018

E-mail: vijayjanyani@gmail.com, vjanyani.ece@mnit.ac.in

Abstract


Over the past few years thin film planar heterojunctions solar cells have made much progress as a low cost with high power conversion efficiency photovoltaic devices. Among the materials used in fabricating such solar cells organometal trihalide perovskite (MAPbI3) has proven to be a promising absorber material due to cheaper organic-inorganic perovskite compounds, abundantly available in nature, ease of fabrication and compatible with low temperature large scale processing. In addition to the efficient absorption in ultra-violet range the material possess intriguing optoelectronic properties such as high crystallinity, high carrier mobility and large carrier diffusion lengths. Currently, the highest power conversion efficiency achieved by such perovskite solar cells is only 23.9% as reported in 2017. In this work we demonstrate a thin film organometal trihalide perovskite solar cell with hybrid interfaces between different materials which are selected after extensive study to achieve reduced recombination and high performance. Further, the absorption of the incident solar spectrum is enhanced by incorporating a 1D photonic crystal at the bottom of the cell facilitating the photon recycling process. The proposed solar cell parameters are numerically computed using rigorous coupled wave algorithm through SYNOPSYS RSOFT CAD tool. The thickness of each layer of the structure is optimized using MOST scanning and optimization module of RSOFT CAD tool to achieve highest power conversion efficiency at minimum device thickness (~2 µm). The power conversion efficiency thus obtained is 25.2% with a fill factor of 86.3% at AM 1.5, which is very promising. This demonstrates the remarkable potential of the proposed design to achieve efficiencies over 20% and compete with the existing crystalline silicon photovoltaic market. 

Keywords

Perovskite, solar cell, thin film, photonic crystal, photon recycling.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM