Cover Page October-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 10, Pages 715-720, October 2018
About Cover

The cover describes the development of nanofibers with encapsulated growth factors has been emerged as a promising approach in neo-tissues applications. The proposed nanofibrous systems provide a novel approach to both simulate the extra-cellular matrix for cell adhesion and also for localized delivery of signaling molecules and growth factors. Growth factors could be loaded into nanofibers using different techniques including physical adsorption, covalent bonding or encapsulation.


Impact of infrared radiation on oxide layer of ultrathin TiNi-based alloy wire

Gunther Sergey1, Chekalkin Timofey1, 2*, Hodorenko Valentina1, Kang Ji-hoon2, Kim Ji-soon3, Gunther Victor1

1Research Institute of Medical Materials, Tomsk State University, ul. 19 Gv. Divizii 17, Tomsk, 634045, Russia

2Material Research Laboratory, Kang&Park Medical Co., 48 Jungsimsangeob-2 ro, Ochang-eub, 28119, S. Korea

3School of Material Science and Engineering, University of Ulsan, 93 Daehak-ro, Ulsan, 44610, S. Korea

Adv. Mater. Lett., 2018, 9 (10), pp 715-720

DOI: 10.5185/amlett.2018.1821

Publication Date (Web): Jul 18, 2018

E-mail: tc77@mail2000.ru

Abstract

Despite the well-known advantages of TiNi-based alloys, the cost of production is still high. The alloys are traditionally made by vacuum induction melting technology followed by vacuum arc remelting to get ingots which are further worked mechanically to final or semi-finished items. The special attention is paid by a thin wire which can be used as a suture material or for a tissue grafting. Thin TiNi yarns are produced by cold drawing via dies with the intermediate annealing. When a diameter is about or over 1 mm, the existing solutions give clear insight into a general idea about how to change the structure and properties of the alloy. However, when the size is definitely scaled-down to 90 μm and less, serious difficulties appear because such yarn requires thoroughly care in mechanical processing steps and repeated heat treatment increases the expense making the product costly and unprofitable. As working steps and heat treatment of the ultrathin TiNi-based wire (UW) are to be more predictable and controllable, there was suggested an infrared (IR) drawing heater due to the radial warming system located prior to the die. In hope to provide a more comprehensive understanding of this issue, a study on how the IR heating method influences on surface properties of the UW, comparing the various effects of heat treatment was carried out using the designed IR heater. The study covers the effect of oxide layer composition and its modification on the properties of the wire IR-heat drawn. Strong correlations were observed between oxide layer thickness and strength characteristic of the resultant wire. These findings elucidate the role of the oxide layer and its composition on a quality of the UW drawing process. 

Keywords

TiNi-based alloy, ultrathin wire, IR drawing, ductility, elemental analysis.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM