Cover Page October-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 10, Pages 684-691, October 2018
About Cover

The cover describes the development of nanofibers with encapsulated growth factors has been emerged as a promising approach in neo-tissues applications. The proposed nanofibrous systems provide a novel approach to both simulate the extra-cellular matrix for cell adhesion and also for localized delivery of signaling molecules and growth factors. Growth factors could be loaded into nanofibers using different techniques including physical adsorption, covalent bonding or encapsulation.


Radiation engineered copper nanoparticles immobilised catalytic reactor (Cu-NICaR) system

Swarnima Rawat1, Nilanjal Misra1, Virendra Kumar1, 2*, Shubhangi Atmaram Shelkar1, Narender Kumar Goel1, Rakesh Kumar Singhal3, Lalit Varshney1, 2

1Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

2Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

3Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

Adv. Mater. Lett., 2018, 9 (10), pp 684-691

DOI: 10.5185/amlett.2018.2123

Publication Date (Web): Jul 18, 2018

E-mail: vkrawat75@gmail.com

Abstract

A robust and reusable Copper Nanoparticles Immobilised Catalytic Reactor (Cu-NICaR) system was fabricated by immobilising Copper Nanoparticles (Cu NPs) onto a radiation functionalized polymer support. Gamma radiation induced simultaneous irradiation grafting process was employed for introducing poly-glycidyl methacrylate (poly(GMA)) chains onto non woven PE-PP matrix. Optimization of the grafting process was carried out by studying the effect of experimental parameters, such as absorbed dose, monomer concentration and solvent polarity on grafting yield. The poly(GMA)-g-PE-PP matrix was used as a functional polymer support for Cu NPs, synthesised under optimized conditions using NaBH4 as reducing agent. Characterization of the samples was carried out by UV-Visible spectrophotometer, Fourier Transform Infrared (FTIR) Spectroscopy, X-ray fluorescence (XRF), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). Catalytic activity of Cu NPs immobilised poly(GMA)-g-PE-PP catalytic system was studied  by spectrophotometrically monitoring the catalytic reduction of p-nitrophenol (PNP), using NaBH4 as reducing agent. The Cu NPs-immobilised-poly(GMA)-g-PE-PP was observed to exhibit excellent catalytic activity both in batch process (12 cycles over a period of 30 days) as well as in fixed bed column reactor mode, without significant loss of activity. 

Keywords

Radiation grafting, copper nanoparticles, Cu-NICaR, catalyst, p-nitrophenol.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM