Remote photonic sensing of glucose concentration via analysis of time varied speckle patterns

Nisan Ozana1, Roy Talman1, Amir Shemer1, Ariel Schwartz1, Sagi Polani2, Ran Califa2, Yevgeny Beiderman2, Joaquin Ruiz-Rivas2, Javier García3 and Zeev Zalevsky1*

1Faculty of Engineering and the Nano Technology Center, Bar-Ilan University, Ramat-Gan 52900, Israel

2ContinUse Biometrics Ltd., HaBarzel 32b st., Tel Aviv 6971048, Israel

3Departamento de Óptica, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain

Adv. Mater. Lett., 2018, 9 (9), pp 624-628

DOI: 10.5185/amlett.2018.2054

Publication Date (Web): Jun 14, 2018



The ability to perform a remote sensing of glucose in the blood stream can be very applicable. The novel method presented in this paper is based on two optical approaches both based on the extraction and analysis of the changes in the collected speckle field. The first physical effect used for the detection is the temporal changes of the back scattered secondary speckles produced in the skin due to the changes of the blood stream parameters as a function of the glucose concentration in the blood. These cardio related changes can be analyzed with different machine learning algorithms to enhance the sensitivity of the measurements. The second physical effect assisting in performing the remote glucose sensing is the Faraday rotation effect in which the polarization of linearly polarized light is rotated when scattered from materials exhibiting this effect while being exposed to a magnetic field.


Sensors, speckles, glucose concentration detection.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM