Fibre-optic trapping and manipulation at the nanoscale

Yuchao Li, Hongbao Xin, Xiaohao Xu, Xiaoshuai Liu, Baojun Li*

Institute of Nanophotonics, Jinan University, Guangzhou 511443, China

Adv. Mater. Lett., 2018, 9 (8), pp 567-577

DOI: 10.5185/amlett.2018.1994

Publication Date (Web): Jun 14, 2018

E-mail: baojunli@jnu.edu.cn

Abstract


With the initial design based on Ashkin’s pioneering work in 1970, optical trapping and manipulation of micron-size particles and cells has been extensively applied in the fields of physical science and technology as well as cellular and molecular biology. However, due to the fundamental diffraction limit of light, it is difficult to extend these techniques to the nanometre range that includes nanomaterials such as nanotubes, nanowires, nanoparticles and biomolecules, which are crucial for nanoscience and nanotechnology. Recently, several approaches based on optical fibre nanoprobes have been developed and demonstrated for trapping and manipulation of nanostructures. Here, starting from basic theories of optical forces, we review the state-of-the-art in fibre-optic trapping and manipulation of different nanostructures, with an emphasis on carbon nanotubes, silver and semiconductor nanowires, upconversion and polystyrene nanoparticles, and DNA molecules. Finally, we discuss the future perspectives of nano-optical manipulation, which has considerable potential applications in a variety of scientific fields.

Keywords

Optical trapping, optical manipulation, nanoscale, fibre nanoprobe, diffraction limit.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM