Cover Page August-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 8, Pages 553-558, August 2018
About Cover


Evaluation of use of bottom ash in cement masonry and concrete regarding their mechanical properties

Rajiv Gupta*, Ayub Ahmed, Sasidhar Kumar Reddy Ithepalli

Birla Institute of Technology and Science, Pilani (Raj.), India.

Adv. Mater. Lett., 2018, 9 (8), pp 553-558

DOI: 10.5185/amlett.2018.1942

Publication Date (Web): Jun 14, 2018

E-mail: rajiv@pilani.bits-pilani.ac.in

Abstract

Large quantities of ash are generated every year by the various manufacturing industries as a waste by-product. This study aims to utilize waste by-product in concrete and to reduce its cost by replacing cement in parts with bottom ash. This research presents the results of the experimental investigations to study the use of bottom ash as partial replacement for cement in concrete and masonry units. Bottom ash is the coarser material, which falls into furnace bottom and constitutes about 20% of total ash content. The strength development for various percentage replacements (5-15%) of cement with bottom ash has been compared to control specimens of concrete and masonry.

Keywords

Bottom ash, compressive strength, concrete, masonry.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM