Evaluation of use of bottom ash in cement masonry and concrete regarding their mechanical properties

Rajiv Gupta*, Ayub Ahmed, Sasidhar Kumar Reddy Ithepalli

Birla Institute of Technology and Science, Pilani (Raj.), India.

Adv. Mater. Lett., 2018, 9 (8), pp 553-558

DOI: 10.5185/amlett.2018.1942

Publication Date (Web): Jun 14, 2018

E-mail: rajiv@pilani.bits-pilani.ac.in

Abstract


Large quantities of ash are generated every year by the various manufacturing industries as a waste by-product. This study aims to utilize waste by-product in concrete and to reduce its cost by replacing cement in parts with bottom ash. This research presents the results of the experimental investigations to study the use of bottom ash as partial replacement for cement in concrete and masonry units. Bottom ash is the coarser material, which falls into furnace bottom and constitutes about 20% of total ash content. The strength development for various percentage replacements (5-15%) of cement with bottom ash has been compared to control specimens of concrete and masonry.

Keywords

Bottom ash, compressive strength, concrete, masonry.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM