Experimental investigation of oxidation resistance of SiC powder for the protection of re-entry space vehicle using material shock tube 

Jayaram Vishakantaiah1*, Gowtham Balasubramaniam2

1Shock Induced Materials Chemistry Laboratory, SSCU, Indian Institute of Science, Bengaluru 560012, India

2Laboratory For Hypersonic and Shock Wave Research, Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, India

Adv. Mater. Lett., 2018, 9 (7), pp 510-515

DOI: 10.5185/amlett.2018.2061

Publication Date (Web): Jun 14, 2018

E-mail: jayaram@iisc.ac.in

Abstract


A novel method of studying oxidation resistance and phase transformation of SiC fine powder was performed using multiple shock treatments in millisecond timescale using indigenously developed material shock tube (MST1). MST1 was used to produce shock waves which heat the ultra high pure oxygen test gas to a reflected shock temperature and pressure of about 5300 K (estimated) and 25 bar, respectively for 1-2 milliseconds. Different characterization techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) show the formation of oxides and sub-oxide species after shock treatment. XRD studies shows the phase transformation of hexagonal SiC to amorphous SiO2. SEM and TEM micrographs show change in surface morphology of SiC from irregular shape to micro/nano spheres due to superheating and cooling at the rate of about 106 K/s. This novel method is used  for the first time to demonstrate the behavior of material in presence of extreme aero-thermodynamic conditions for a short duration. These conditions generated using shock tubes are not achievable by conventional furnaces for oxidation studies of SiC in a short duration.

Keywords

Dynamic shock treatment, oxidation of SiC, gas-solid interaction, high temperature ceramic, non-catalytic reactions.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM