Swift heavy ion induced modifications in the structural, optical and methane sensing properties of indium oxide thin films - A comparative study using Ag9+ and O7+ ion irradiation Swift heavy ion induced modifications in the structural, optical and methane sensing properties of indium oxide thin films - A comparative study using Ag9+ and O7+ ion irradiation
1Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
2Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India
3Amity Institute of Nanotechnology, Noida, Uttar Pradesh 201313, India
Adv. Mater. Lett., 2018, 9 (7), pp 481-487
DOI: 10.5185/amlett.2018.2033
Publication Date (Web): Jun 14, 2018
Copyright © IAAM-VBRI Press
E-mail: amsiddiqui@jmi.ac.in
Thin films of indium oxide grown on quartz substrates were subjected to 100 MeV Ag9+ and O7+ ions irradiation. The pristine and swift heavy ions irradiated films were characterized using X-ray Diffraction, Rutherford Backscattering Spectrometry, Scanning Electron Microscopy and UV-Vis Spectroscopy to examine the effect of irradiation with ions having large difference in the values of electronic energy loss (Se) on the structural, microstructural and optical properties of indium oxide thin films. XRD and SEM studies revealed deterioration in crystallinity along with decrease in both crystallite size and grain size upon irradiation with both Ag9+ and O7+ ions. However, the decrease in the crystallite size and grain size in comparison to the pristine film was more radical for irradiation with Ag9+ ions. RBS spectra suggest that the electronic sputtering in the indium oxide films due to SHI irradiation is very less. AFM images illustrate the decrease in surface roughness from 29.8 nm for the pristine film to to 27.4 nm and 26.7 nm on irradiation with 100 MeV O7+ and Ag9+ ions at a fluence of 3.3×1013 ions/cm2. Also, UV-Vis study revealed an increment in the value of optical band gap from 3.41 eV for the pristine film to 3.53 and 3.67 eV for indium oxide films irradiated with of 3.3×1013 ions/cm2 fluence of O7+ and Ag9+ ions respectively. The irradiation induced structural and optical modifications have been explained using the Thermal spike model. Along with the structural and optical properties, sensing properties of the pristine and irradiated films for 100 ppm methane gas at an operating temperature of 300oC have also been examined and the results have been correlated with the induced structural modifications.
Indium oxide, swift heavy ions, electronic energy loss, thermal spike, gas sensing.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India