1Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Street, Kyiv 03164 Ukraine
2China-Central and Eastern Europe International Science and Technology Achievement Transfer Center, Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China
3Department of Photonic Crystals, V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Prospect Nauki, Kyiv 03028, Ukraine
Adv. Mater. Lett., 2018, 9 (6), pp 450-455
DOI: 10.5185/amlett.2018.1965
Publication Date (Web): May 17, 2018
Copyright © IAAM-VBRI Press
E-mail: nikar@kartel.kiev.ua
The possible mechanisms of decomposition of benzoyl peroxide were investigated by the method of density functional theory with the exchange-correlation functionality of B3LYP, a basis set of 6-31G (d, p). It was carried out a comparative analysis of the quantum chemical calculations of the electronic structure of carbon nanoclusters simulating the active surface of sp2 carbon materials, including their modifications by the heteroatoms N and O. The energy parameters of the benzoyl peroxide molecule and all possible products of its decomposition, as well as the interaction of the free radical Ph-COO• with model graphite-like nanoclusters were considered. The calculations are compared with the experimental results of the catalytic activity of the varieties of activated charcoal and the catalase enzyme in the reaction of the benzoyl peroxide decomposition in a non-aqueous medium. It has been established that in the benzoyl peroxide molecule, regardless of the polarity of the medium, the weakest is the bond (O-O). The greatest ability to decompose benzoyl peroxide, which is much larger than that of catalase, was detected on the N-containing carbonaceous materials. It is shown that the free radical Ph-COO• is lighter and kinetically, and thermodynamically interacted with the graphite-like plane of the model N-containing carbon nanoclusters.
Carbon materials, benzoyl peroxide, catalytic activity, reaction mechanism, quantum chemistry, density function theory method, cluster approximation.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study