Mechanical properties of hydroxyapatite scaffolds produced by gel-casting and combination gel-casting/polymer foams infiltration Mechanical properties of hydroxyapatite scaffolds produced by gel-casting and combination gel-casting/polymer foams infiltration
Biomaterials Research Group, Engineering Faculty, University of Antioquia, St 70 Nº 52-21, Medellin, 1226, Colombia
Adv. Mater. Lett., 2018, 9 (4), pp 266-274
DOI: 10.5185/amlett.2018.1981
Publication Date (Web): May 17, 2018
Copyright © IAAM-VBRI Press
E-mail: jazpcn@gmail.com
Hydroxyapatite is one of the appropriate materials for hard tissue engineering because it is the inorganic structural constituent of bones and teeth, and hydroxyapatite has been evaluated to compare the mechanical properties, processing as scaffolds to evaluate the influence of porosity, since the elastic modulus of material is influenced by the porosity, it is essential to establish a relationship between the two characteristics to obtain a material with optimum conditions for its implantation. The main objective of this research was to study the mechanical properties of hydroxyapatite scaffolds using compression and nanoindentation tests. The scaffolds were manufactured by gel-casting and gel-casting combined with foam polymer infiltration, in both cases 40 and 50% solids and three different monomers were used. The samples obtained by gel-casting exhibited a compressive strength between 0.93 and 6.15 MPa, an elastic modulus between 11.46 and 27.27 GPa; some of these scaffolds showed very similar values to human trabecular bone reported. In addition, samples produced by gel-casting combined with foam polymer infiltration, it was found that compressive strength was between 0.05 and 0.12 MPa, the elastic modulus between 1.61 and 6.24 GPa, concluding that the gel-casting produces scaffolds with closest to trabecular bone.
Gel-casting, hydroxyapatite, infiltration, nanoindentation, scaffolds, strength.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India