Biomaterials Research Group, Engineering Faculty, University of Antioquia, St 70 Nº 52-21, Medellin, 1226, Colombia
Adv. Mater. Lett., 2018, 9 (4), pp 266-274
DOI: 10.5185/amlett.2018.1981
Publication Date (Web): May 17, 2018
Copyright © IAAM-VBRI Press
E-mail: jazpcn@gmail.com
Hydroxyapatite is one of the appropriate materials for hard tissue engineering because it is the inorganic structural constituent of bones and teeth, and hydroxyapatite has been evaluated to compare the mechanical properties, processing as scaffolds to evaluate the influence of porosity, since the elastic modulus of material is influenced by the porosity, it is essential to establish a relationship between the two characteristics to obtain a material with optimum conditions for its implantation. The main objective of this research was to study the mechanical properties of hydroxyapatite scaffolds using compression and nanoindentation tests. The scaffolds were manufactured by gel-casting and gel-casting combined with foam polymer infiltration, in both cases 40 and 50% solids and three different monomers were used. The samples obtained by gel-casting exhibited a compressive strength between 0.93 and 6.15 MPa, an elastic modulus between 11.46 and 27.27 GPa; some of these scaffolds showed very similar values to human trabecular bone reported. In addition, samples produced by gel-casting combined with foam polymer infiltration, it was found that compressive strength was between 0.05 and 0.12 MPa, the elastic modulus between 1.61 and 6.24 GPa, concluding that the gel-casting produces scaffolds with closest to trabecular bone.
Gel-casting, hydroxyapatite, infiltration, nanoindentation, scaffolds, strength.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study