Cover Page March-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 3, Pages 205-210, March 2018
About Cover


Stacking patterns and carrier mobilities of GeS bilayer

Fazel Shojaei1, Hong Seok Kang2*

1Department of Chemistry and Bioactive Material Sciences and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea

2Department of Nano and Advanced Materials, College of Engineering, Jeonju University, Hyoja-dong, Wansan-ku, Chonju, Chonbuk 560-759, Republic of Korea

Adv. Mater. Lett., 2018, 9 (3), pp 205-210

DOI: 10.5185/amlett.2018.1858

Publication Date (Web): May 16, 2018

E-mail: hsk@jj.ac.kr

Abstract

Based on the first-principles calculations, we identify four stacking patterns of the GeS bilayer, in which two most stable ones are almost equally stable. The most stable one corresponds to the experimental pattern in bulk GeS.  Its interlayer binding is stronger than those in a-phosphorene and graphene, indicating that the material will rather exist in the form of bilayers or multilayers. Our HSE06 band structure calculations show that both patterns are semiconductors with indirect band gaps in the visible region, which are slightly smaller than that of the monolayer. For the monolayer, our refined calculation based on the deformation potential approximation indicates that the electron mobility along the armchair direction amounts to 4.62×104 cm2 V-1s-1, which is ~40 times larger than that of the a-phosphorene. The electron mobility of the bilayer is dependent on the stacking pattern. The most stable pattern is expected to exhibit the mobility of 1.69×104 cm2V-1s-1, which is still ~30 times larger than that of the bilayer a-phosphorene. A detailed comparison of the carrier mobilities suggests that both of the mono- and bi-layer will be useful for n-type electronics.

Keywords

First-principles calculation, bilayer formation, band gap, stacking pattern, deformation potential method, carrier mobility.

Current Issue

Wearable Healthcare Devices


Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review


Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review


Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element


Plasma Activated Water Generation and its Application in Agriculture


Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 


Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels


Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity


Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes


Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties


Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency


Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies


Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles


Upcoming Congress

Knowledge Experience at Sea TM